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Abstract. The discrete Hamiltonian formulation of Lagrangian pos-
sessing linear velocities is investigated and the equivalence of Hamilton
and Euler-Lagrange equations is obtained. The fractional path integral
of damped harmonic oscillator is analyzed in details.
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1. INTRODUCTION
The discrete variational theory was subjected to an intense debate during

the last years [1, 2]. In [1] the possibility that time can be considered as a dis-
crete dynamical variable was analyzed for classical mechanics and relativistic
quantum field theory and the conservation laws of difference equations were
investigated in this theory [2]. Recently, the discrete difference theory of con-
strained systems was found to be a powerful approach in quantum gravity
[3]. Besides, the consistent discretization approach [3] to general relativity
leaving the spatial slices continuous was analyzed very recently in [3]. An
important issue is to construct the discrete canonical Hamiltonian in the
presence of primary constraints. This procedure, if we would like to mimic
the continuous case construction, will lead us to introduce Lagrange mul-
tipliers. In this paper the discrete Euler-Lagrange equations were obtained
and the equivalence with Hamilton’s equations is discussed.
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The generalization of the concept of derivative and integral to a non-
integer order α has been subjected to several approaches and some various
alternative definitions o fractional derivatives appeared. During the last
three decades the fractional calculus has become a field of growing interest
because of its multiple and interesting applications in several fields such as
mathematics, physics and engineering [4]. An important issue is to quantize
the fractional Hamiltonian corresponding to a given fractional Lagrangian
and to find its corresponding path integral [5, 6, 7, 8, 9, 10]. In this study
the Riewe’s formalism is generalized by considering a Lagrangian involving
the Lagrange multipliers. Besides, the corresponding Hamiltonian equations
are obtained.

2 DIFFERENCE DISCRETE VARIATIONAL PRINCIPLES

The main aim of this section is to investigate the singular discrete La-
grangians and the corresponding discrete Hamiltonians when the Hessian
matrix has rank zero.

The starting point is the continuous action corresponding to a Lan-
grangian possessing only the linear velocities

A =
∫

[ai(q1, q2, ..., qm)q̇i − V (q1, q2, ..., qm)]dt, (1)

where the qi, i = 1, 2, .., m depend only on time and V is the potential.
We will consider the following discrete counterpart of (1)

AD =
N∑

n=1

[
m∑

i=1

ai(q1
n, q2

n, ..., qm
n )

∆qi
n−1

∆tn−1
− V (q1

n, q2
n, ..., qm

n )]∆tn−1, (2)

where qi = qi
n, q̇i =

∆qi
n−1

∆tn−1
, qi

n = qi(tn) and ∆qi
n = qi

n − qi
n−1.

Using (2) we obtain the Euler-Lagrange equations [12, 13] as follows

m∑

i=1

∂ai

∂qj
n

∆qi
n−1

∆tn−1
− ∂V

∂qj
n

=
∆aj

∆tn−1
, j = 1, 2, ..., m. (3)

In the following we analyze an example described by the following action
∫

[(q̇1 + q̇2)q3 +
1
2
(q̇3)2 − 1

2
(q2)2]dt. (4)
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We will consider the following discrete counterpart of the action (4) as
follows

AD =
N∑

n=1

[(
∆q1

n−1

∆tn−1
+

∆q2
n−1

∆tn−1
)q3

n +
1
2
(
∆q3

n−1

∆tn−1
)2 − 1

2
(q2

n)2]∆tn−1. (5)

The discrete Euler- Lagrange equations for (5) are given by

∆q3
n−1

∆tn−1
= 0, (6)

∆q3
n−1

∆tn−1
= −q2

n, (7)

∆q3
n−1

∆tn−1

∆tn−1
=

∆q1
n−1

∆tn−1
+

∆q2
n−1

∆tn−1
, (8)

where n = 1, 2, ..., N − 1.
After some calculation the solutions of the discrete Euler-Lagrange equa-

tions (6), (7) and (8) become

q1
n = c1, q2

n = 0, q3
n = c2, (9)

where c1 and c2 are constants.
The next step is to define the corresponding discrete Hamiltonian.The

canonical momenta are

zj
n−1 =

∂LD

∂(
∆qj

n−1

∆tn−1
)
, j = 1, 2, 3. (10)

By using (10) we obtain

z1
n−1 = q3

n, z2
n−1 = q3

n, z3
n−1 =

∆q3
n−1

∆tn−1
. (11)

Having in mind that

∂zj
n−1

∂
∆qi

n−1

∆tn−1

=
∂2LD

∂
∆qi

n−1

∆tn−1
∂

∆qj
n−1

∆tn−1

, (12)
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is a matrix with rank < 3 we conclude that a discrete Legendre transforma-

tion is not valid. To bypass this problem we denote λj
n−1 =

∆qj
n−1

∆tn−1
, j =

1, 2, 3 and define the discrete Hamiltonian as

HD =
3∑

i=1

zi
n−1λ

i
n−1 − LD. (13)

The form of discrete Hamiltonian becomes

HD = λ1
n−1(z

1
n−1−q3

n)+λ2
n−1(z

2
n−1−q3

n)+λ3
n−1(z

3
n−1−

1
2
λ3

n−1)+
1
2
(q2

n)2. (14)

The canonical equations of motions are
∆zj

n−1

∆tn−1
= −∂H

∂qj
n

, j = 1, 2, 3 [13] or

in the explicit form become

∆z1
n−1

∆tn−1
= 0,

∆z2
n−1

∆tn−1
= q2

n,
∆z3

n−1

∆tn−1
= λ1

n−1 + λ2
n−1. (15)

By inspection we observed that (15) together with (12) are equivalent to the
Euler-Lagrange equations (6) ,(7) and (8) respectively.

3 FRACTIONAL EULER- LAGRANGE AND
HAMILTONIAN EQUATIONS

As it is very well known the left Riemann-Liouville fractional derivative
is defined as follows

aDα
t f(t) =

1
Γ(n− α)

(
d

dt

)n
t∫

a

(t− τ)n−α−1f(τ)dτ, (16)

and the corresponding right Riemann-Liouville fractional derivative is
given by

tDα
b f(t) =

1
Γ(n− α)

(
− d

dt

)n
b∫

t

(τ − t)n−α−1f(τ)dτ. (17)

Here the order α fulfills n − 1 ≤ α < n and Γ denotes the Euler’s Gamma
function. For α being integer, these derivatives are defined in the usual
sense, i.e.,

aD
α
t f(t) =

(
d

dt

)α

, tD
α
b f(t) =

(
− d

dt

)α

, α = 1, 2, .... (18)
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Agrawal investigated the Euler-Lagrange equations for fractional varia-
tional problems [6]. In the following we summarize his approach.

Let us consider the action function

S[q1
0, ....q

R
0 ] =

∫ b

a
L({qr

n, Qr
n′}, t)dt, (19)

subject to the independent constraints

Φm(t, q1
0, ..., q

R
0 , qr

n, Qr
n′) = 0, m < R. (20)

Here the generalized coordinates are defined as follows

qr
n = (aD

α
t )nxr(t), Qr

n′ = (tD
β
b )n′xr(t). (21)

Then, the necessary condition for the curves q1
0, ...., q

R
0 with the boundary

conditions qr
0(a) = qra

0 , qr
0(b) = qrb

0 , r = 1, 2, , ..., R, to be an extremal of the
functional given by equation (19) is that the functions qr

0 satisfy the following
Euler-Lagrange equations [6]:

∂L̄

∂qr
0

+
N∑

n=1

(tD
α
b )n ∂L̄

∂qr
n

+
N ′∑

n′=1

(aD
α
t )n′ ∂L̄

∂Qr
n′

= 0, (22)

where L̄ is given by [6]

L̄({qr
n, Qr

n′}, t, λm(t)) = L({qr
n, Qr

n′}, t) + λm(t)Φm(t, q1
0, ..., q

R
0 , qr

n, Qr
n′).

(23)
Here the multiple λm(t) ∈ Rm represent continuous functions on [a, b].

The next step is to obtain the Hamilton’s equations for the the fractional
variational problems.Fore these reasons we re-define the left and the right
canonical momenta as follows

pr
n =

N∑

k=n+1

(tD
α
b )k−n−1 ∂L̄

∂qr
k

,

πr
n′ =

N ′∑

k=n′+1

(aD
α
t )k−n′−1 ∂L̄

∂Qr
k

. (24)

By taking into account (24), the canonical Hamiltonian becomes

H̄ =
R∑

r=1

N−1∑

n=0

pr
nqr

n+1 +
R∑

r=1

N ′−1∑

n′=0

πr
n′Q

r
n′+1 − L̄. (25)
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Therefore, the modified canonical equations of motion are obtained as follows

{qr
n, H̄} = tD

α
b pr

n, {Qr
n′ , H̄} = aD

α
t πr

n′ , (26)
{qr

0, H̄} = tD
α
b pr

0 + aD
α
t πr

0, (27)

where, n = 1, ..., N, n′ = 1, ..., N ′.
The remaining set of equations of motion are given by

{pr
n, H̄} = qr

n+1 = aD
α
t qr

n, {πr
n′ , H̄} = Qr

n+1 = tD
α
b Qr

n′ , (28)
∂H̄

∂t
= −∂L̄

∂t
. (29)

Here, n = 0, ..., N, n′ = 1, ..., N ′ and the commutator {, } represents the
Poisson’s bracket defined as

{A,B}qr
n,pr

n,Qr
n′ ,π

r
n′

=
∂A

∂qr
n

∂B

∂pr
n

− ∂B

∂qr
n

∂A

∂pr
n

+
∂A

∂Qr
n′

∂B

∂πr
n′
− ∂B

∂Qr
n′

∂A

∂πr
n′

, (30)

where, n = 0, ..., N, n′ = 1, ..., N ′.
As an example of the application of the fractional derivatives in Hamilto-

nian mechanics, let us consider the dissipative force proportional to (q1)1/2.
If we assume an object of mass m with initial velocity v0 subjected s to a
resistive force proportional to (q1)1/2, the corresponding differential equation
of motion reads [11]

F (q1) = −c(q1)1/2 = m
dq1

dt
= mq2, (31)

where c represents a positive constant. By solving (31) the above equation
with respect to the time t, we obtain

t = −2m

c

[
(q1)1/2 − (v0)1/2

]
, (32)

which is equivalent to

(q1)1/2 = (v0)1/2 − c

2m
t. (33)

In the above equations we have assumed, q0 = x, Dβq0 = dβx
d(t−b)β

Substituting in equation (31), we obtain

F (q1) = −c

[
(v0)1/2 − c

2m
t

]
. (34)



DIFFERENCE DISCRETE AND FRACTIONAL VARIATIONAL PRINCIPLES 181

Following reference [11], the potential energy becomes

U = − 2ic√
π

[
t1/2(v0)1/2 − c

3m
t

]
q1/2. (35)

The corresponding Lagrangian of this system takes the following form

L =
1
2
mq2

1 +
2ic√

π

[
t1/2(v0)1/2 − c

3m
t

]
q1/2. (36)

The momenta p0 and p1/2 read as

p0 =
2ic√

π

[
t1/2(v0)1/2 − c

3m
t

]
+ imD1/2[q1], (37)

p1/2 = mq1. (38)

Therefore, the Hamiltonian of the system takes the form

H =
p2

1
2

2m
+ q 1

2
p0 − 2ic√

π

[
[t1/2(v0)1/2 − c

3m
t

]
q1/2. (39)

Making use of (39) the canonical action function is calculated as

S =
∫ 

q1p 1
2
−

p2
1
2

2m
+

2ic√
π

[
t1/2(v0)1/2 − c

3m
t

]
q1/2


 dt. (40)

The path integral representation for the above system is given by

K =
∫

dq0 dp0 dq 1
2

dp 1
2

× exp i




∫ 
q1p 1

2
−

p2
1
2

2m
+

2ic√
π

[
t1/2(v0)1/2 − c

3m
t

]
q1/2


 dt


 . (41)

The path integral representation (41) is an integration over the canonical
phase space coordinates (q0, p0) and (q 1

2
, p 1

2
).

Integrating over p 1
2

and p0, we arrive at the following result

K =
∫

dq0 dq 1
2

exp i

∫ (
1
2
mq2

1 +
2ic√

π

[
t1/2(v0)1/2 − c

3m
t

]
q1/2

)
dt. (42)
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Finally, the equation (42) can be express in a compact form as follows

K =
∫

dq0 ei
∫

( 1
2
mq2

1))dt
∫

dq 1
2

exp i

∫
(
2ic√

π

[
t1/2(v0)1/2 − c

3m
t

]
q1/2)dt.

(43)
Acknowledgements

One of the authors (D.B.) would like to thank the organizers of BW2005
workshop for giving him the opportunity to attend this meeting and for
financial support.



References

[1] T.D. Lee, Phys. Lett. B 122(3-4) 217 (1983).

[2] T.D. Lee, J. Stat. Phys. 46(5-6) 843 (1987).

[3] R. Gambini and J. Pullin, Phys. Rev.Lett. 94 101302 (2005).

[4] K.S. Miller and B. Ross, An Introduction to the Fractional Integrals and
Derivatives-Theory and Applications, Gordon and Breach, Longhorne,
PA, 1993.

[5] F. Riewe, Phys. Rev. E 55 3581 (1997).

[6] O.P. Agrawal, J. Math. Anal. Appl. 272 368 (2002).

[7] S. Muslih and D. Baleanu, J. Math. Anal. Appl. 304 599 (2005).

[8] D.Baleanu and T.Avkar, Nuovo Cimento 119 73 (2004).

[9] D.Baleanu and S.Muslih, Physica Scripta 72 119 (2005).

[10] S.I.Muslih and D. Baleanu, Czech. J. Phys. 55 (6) 633 (2005).

[11] E.M. Rabei,T.S. Alhalholy, Int.J.Mod.Phys.Lett.A 19 (17-18) 3083
(2004).

[12] W.G. Kelley and A.C. Peterson, Difference Equations, an Introduction
with Applications, (Academic Press, Boston) 1991.

[13] C.D. Ahlbrandt and A.C. Peterson, Discrete Hamiltonian Systems
(Kluwer Academic Publishers, Boston) 1996 .

183


