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Abstract. We consider gauge theories defined in higher dimensions
when the extra dimensions form a fuzzy space. We recall the striking
feature of the appearance of non-abelian Un gauge theories in four di-
mensions starting with an abelian gauge theory in higher dimensions
and discuss the difficulties of extending this property to SOn gauge
theories.
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1. INTRODUCTION

Non-commutative Geometry [1, 2] has been regarded a promising frame-
work for obtaining finite quantum field theories. Quantization of fields over
“spaces” described by infinite-dimensional algebras has proven to be more
subtle than was originally expected. The difficulties encountered prompted
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some to look for models with finite-dimensional algebras, for example ma-
trix algebras. It is interesting to consider these non-commutative spaces as
extra dimensions in higher dimensional theories [12, 13]. A subsequent di-
mensional reduction of the extra dimensions could lead to interesting models
of low-energy particle physics. The dimensional reduction scheme over coset
spaces (CSDR) [3]-[6] gave fruitful results in case of classical commutative
spaces [4], [7]-[11]; its use for the case of non-commutative ones may lead
to important conclusions. As a sequel to [12, 13] we here consider gauge
theories defined in higher dimensions, where the extra dimensions form a
fuzzy sphere [14, 2]. We interpret these gauge theories as four-dimensional
theories with Kaluza-Klein modes. We recall how Un gauge theories emerge
in four dimensions starting only with a U1 in higher dimensions and discuss
the extension of this result to gauge theories based on orthogonal groups.

2. THE FUZZY SPHERE

The fuzzy sphere, S2
F , is a matrix approximation2 of the usual sphere S2

which has been used [14, 2] as a model of non-commutative gravity. The al-
gebra of functions on S2 (for example spanned by the spherical harmonics) is
truncated at a given frequency; the product is modified so that the resulting
vector space becomes an algebra of complex matrices. The “space” described
by this non-commutative algebra, endowed with a differential structure and
geometry we refer to as a fuzzy sphere. The algebra itself is that of n×n ma-
trices. More precisely, the algebra of functions on the ordinary sphere can be
generated by the coordinates of R3 modulo the relation

∑3
â=1 xâxâ = r2. Fol-

lowing the notation of previous articles [12, 13] we describe the fuzzy sphere
S2

F at fuzziness level n − 1 to be the non-commutative “manifold” whose
coordinate “functions” iXâ are n×n hermitian matrices proportional to the
generators of the n-dimensional representation of SU2. They satisfy the con-
dition

∑3
â=1 XâXâ = αr2 and the commutation relations [Xâ, Xb̂] = Câb̂ĉXĉ

where Câb̂ĉ = εâb̂ĉ/r and the proportionality factor α goes as n2 for n large.
Indeed it can be proven that for n →∞ one obtains the usual commutative
sphere. The coordinates X â can be also considered as momenta [2] and have
been designated as pâ.

On the fuzzy sphere there is a natural SU2 covariant differential calcu-
lus. This calculus is three-dimensional and the derivations eâ along Xâ of
a function f are given by eâ(f) = [Xâ, f ] . Accordingly the action of the

2For historical details and literature for the construction consult [2].
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Lie derivatives on functions is given by Lâf = [Xâ, f ]. In the n → ∞
limit the derivations eâ become eâ = Câb̂ĉx

b̂∂ ĉ and only in this commuta-
tive limit the tangent space becomes two-dimensional. The exterior deriva-
tive is given by df = [Xâ, f ]θâ with θâ the one-forms dual to the vector
fields eâ, < eâ, θ

b̂ >= δb̂
â. The space of one-forms is generated by the θâ’s

in the sense that for any one-form ω =
∑

i fidhi ti we can always write
ω =

∑3
â=1 ωâθ

â with given functions ωâ depending on the functions fi, hi

and ti. The action of the Lie derivatives Lâ on the one-forms θb̂ explic-
itly reads Lâ(θb̂) = Câb̂ĉθ

ĉ . On a general one-form ω = ωâθ
â we have

Lb̂ω = Lb̂(ωâθ
â) =

[
Xb̂, ωâ

]
θâ − ωâC

â
b̂ĉ

θĉ and therefore

(Lb̂ω)â =
[
Xb̂, ωâ

]− ωĉC
ĉ
b̂â

; (1)

this formula is fundamental for formulating the CSDR principle on fuzzy
cosets [12].

The differential geometry on the product space Minkowski times fuzzy
sphere, M4 × S2

F , is easily obtained from that on M4 and on S2
F . For

example a one-form A defined on M4 × S2
F is written as A = Aµdxµ + Aâθ

â

with Aµ = Aµ(xµ, Xâ) and Aâ = Aâ(xµ, Xâ).
One can also introduce spinors on the fuzzy sphere and study the Lie

derivative on these spinors. Similarly, one can study other (higher dimen-
sional) fuzzy spaces (e.g. fuzzy CPM ).

3. FOUR-DIMENSIONAL INTERPRETATION OF HIGHER
DIMENSIONAL ACTIONS

First we consider on M4 × (S/R)F a non-commutative gauge theory
with gauge group G = UP and examine its four-dimensional interpretation.
(S/R)F is a fuzzy coset, for example the fuzzy sphere S2

F (in which case the
groups S and R are given by S = SU(2) and R = U(1)). The action is

AY M =
1

4g2

∫
d4x kTr trG FMNFMN , (2)

where k Tr denotes integration over the fuzzy coset (S/R)F described by
n× n matrices; here the normalization parameter k is related to the size of
the fuzzy coset space. For example for the fuzzy sphere at fuzzyness level
n − 1 we have r2 =

√
n2 − 1πk [2]. In the n → ∞ limit kTr becomes

the usual integral on the coset space. For finite n, Tr is a good integral
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because it has the cyclic property Tr(f1 . . . fp−1fp) = Tr(fpf1 . . . fp−1). It
is also invariant under the action of the group S, that is infinitesimally
given by the Lie derivative. In the action (2) trG is the gauge group G
trace. The higher-dimensional field strength FMN , decomposed in four-
dimensional space-time and extra-dimensional components, reads as follows
(Fµν , Fµb̂, Fâb̂) ; explicitly the various components of the field strength are
given by

Fµν = ∂µAν − ∂νAµ + [Aµ, Aν ], (3)

Fµâ = ∂µAâ − [Xâ, Aµ] + [Aµ, Aâ],

Fâb̂ = [Xâ, Ab̂]− [Xb̂, Aâ] + [Aâ, Ab̂]− C ĉ
âb̂

Aĉ. (4)

Under an infinitesimal G gauge transformation λ = λ(xµ, X â) we have

δAâ = −[Xâ, λ] + [λ, Aâ] , (5)

thus FMN is covariant under local G gauge transformations: FMN → FMN +
[λ, FMN ]. This is an infinitesimal abelian U1 gauge transformation if λ is
just an antihermitian function of the coordinates xµ, X â. It is an infinitesi-
mal non-abelian UP gauge transformation if λ is valued in Lie(UP ), the Lie
algebra of hermitian P × P matrices. In the following we will always as-
sume Lie(UP ) elements to commute with the coordinates X â. In fuzzy/non-
commutative gauge theory and in Fuzzy-CSDR a fundamental role is played
by the covariant coordinate, ϕâ ≡ Xâ + Aâ. This field transforms indeed
covariantly under a gauge transformation, δ(ϕâ) = [λ, ϕâ] . In terms of ϕ
the field strength in the non-commutative directions reads,

Fµâ = ∂µϕâ + [Aµ, ϕâ] = Dµϕâ, Fâb̂ = [ϕâ, ϕb̂]− C ĉ
âb̂

ϕĉ ; (6)

and using these expressions the action reads

AY M =
∫

d4xTr trG

(
k

4g2
F 2

µν +
k

2g2
(Dµϕâ)2 − V (ϕ)

)
, (7)

where the potential term V (ϕ) is the Fâb̂ kinetic term (in our conventions
Fâb̂ is antihermitian so that V (ϕ) is hermitian and non-negative)

V (ϕ) = − k

4g2
Tr trG

∑

âb̂

Fâb̂Fâb̂

= − k

4g2
Tr trG

(
[ϕâ, ϕb̂][ϕ

â, ϕb̂]− 4Câb̂ĉϕ
âϕb̂ϕĉ + 2r−2ϕ2

)
.

(8)
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The action (7) is naturally interpreted as an action in four dimensions. The
infinitesimal G gauge transformation with gauge parameter λ(xµ, X â) can
indeed be interpreted just as an M4 gauge transformation. We write

λ(xµ, X â) = λα(xµ, X â)T α = λh,α(xµ)T hT α , (9)

where T α are hermitian generators of UP , λα(xµ, X â) are n×n antihermitian
matrices and thus are expressible as λ(xµ)α,hT h, where T h are antihermitian
generators of Un. The fields λ(xµ)α,h, with h = 1, . . . n2, are the Kaluza-
Klein modes of λ(xµ, X â)α. We now consider on equal footing the indices h
and α and interpret the fields on the r.h.s. of (9) as one field valued in the
tensor product Lie algebra Lie(Un) ⊗ Lie(UP ). This Lie algebra is indeed
Lie(UnP ) (the (nP )2 generators T hT α being nP×nP antihermitian matrices
that are linearly independent). Similarly we rewrite the gauge field Aν as

Aν(xµ, X â) = Aα
ν (xµ, X â)T α = Ah,α

ν (xµ)T hT α, (10)

and interpret it as a Lie(UnP ) valued gauge field on M4, and similarly for
ϕâ. Finally Tr trG is the trace over UnP matrices in the fundamental repre-
sentation.

Up to now we have just performed an ordinary fuzzy dimensional re-
duction. Indeed in the commutative case the expression (7) corresponds to
rewriting the initial lagrangian on M4×S2 using spherical harmonics on S2.
Here the space of functions is finite dimensional and therefore the infinite
tower of modes reduces to the finite sum given by Tr. The machinery of
CSDR [3, 4] can be used afterwards to reduce the number of the field content
of the theory and possibly obtain realistic particle physics model. The rules
of a non-commutative version of the dimensional reduction in question have
been set in ref [12], whereas the renormalisability of these theories have been
discussed in [13].

4. NON-TRIVIAL DIMENSIONAL REDUCTION AND FUZZY
EXTRA DIMENSIONS

Next we reduce the number of gauge fields and scalars in the action (7) by
applying the CSDR scheme. Since SU2 acts on the fuzzy sphere (SU2/U1)F ,
and more in general the group S acts on the fuzzy coset (S/R)F , we can state
the CSDR principle in the same way as in the continuum case, i.e. the fields
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in the theory must be invariant under the infinitesimal SU2, respectively S,
action up to an infinitesimal gauge transformation

Lb̂φ = δWb̂
φ = Wb̂φ , Lb̂A = δWb̂

A = −DWb̂, (11)

where A is the one-form gauge potential A = Aµdxµ+Aâθ
â, and Wb̂ depends

only on the coset coordinates X â and (like Aµ, Aa) is antihermitian. We
thus write Wb̂ = Wα

b̂
T α, α = 1, 2 . . . P 2, where T i are hermitian generators

of U(P ) and (W i
b )
† = −W i

b , here † is hermitian conjugation on the X â’s.
In terms of the covariant coordinate ϕd̂ = Xd̂ +Ad̂ and of ωâ ≡ Xâ−Wâ,

the CSDR constraints assume a particularly simple form, namely

[ωb̂, Aµ] = 0 , (12)

Cb̂d̂êϕ
ê = [ωb̂ , ϕd̂] . (13)

In addition we have a consistency condition following from the relation
[Lâ,Lb̂] = C ĉ

âb̂
Lĉ:

[ωâ, ωb̂] = C ĉ
âb̂

ωc, (14)

where ωâ transforms as ωâ → ω′â = gωâg
−1. One proceeds in a similar way

for the spinor fields [12].

Solving the CSDR constraints for the fuzzy sphere

We consider (S/R)F = S2
F , i.e. the fuzzy sphere, and to be definite at

fuzziness level n−1 (n×n matrices). We study here the basic example where
the gauge group is G = U1. In this case the ωâ = ωâ(X b̂) appearing in the
consistency condition (14) are n × n antihermitian matrices and therefore
can be interpreted as elements of Lie(Un). On the other hand the ωâ satisfy
the commutation relations (14) of Lie(SU2). Therefore in order to satisfy
the consistency condition (14) we have to embed Lie(SU2) in Lie(Un). Let
T h with h = 1, . . . , n2 be the generators of Lie(Un) in the fundamental
representation, we can always use the convention h = (â, u) with â = 1, 2, 3
and u = 4, 5, . . . , n2 where the T â satisfy the SU2 Lie algebra, [T â, T b̂] =
C âb̂

ĉ T ĉ. Then we define an embedding by identifying

ωâ = Tâ . (15)

The constraint (12), [ωb̂, Aµ] = 0, then implies that the four-dimensional
gauge group K is the centralizer of the image of SU2 in Un, i.e.

K = CUn(SU2) = SUn−2 × U1 × U1 ,
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where the last U1 is the U1 of Un ' SUn × U1. The functions Aµ(x,X)
are arbitrary functions of x but the X dependence is such that Aµ(x,X) is
Lie(K) valued instead of Lie(Un), i.e. eventually we have a four-dimensional
gauge potential Aµ(x) with values in Lie(K). Concerning the constraint
(13), it is satisfied by choosing

ϕâ = rϕ(x)ωâ , (16)

i.e. the unconstrained degrees of freedom correspond to the scalar field ϕ(x)
which is a singlet under the four-dimensional gauge group K.

The choice (15) defines one of the possible embedding of Lie(SU2) in
Lie(Un). For example we could also embed Lie(SU2) in Lie(Un) using the
irreducible n-dimensional rep. of SU2, i.e. we could identify ωâ = Xâ. The
constraint (12) in this case implies that the four-dimensional gauge group is
U1 so that Aµ(x) is U1 valued. The constraint (13) leads again to the scalar
singlet ϕ(x).

In general, we start with a U1 gauge theory on M4 × S2
F . We solve the

CSDR constraint (14) by embedding SU2 in Un. There exist pn embed-
dings, where pn is the number of ways one can partition the integer n into
a set of non-increasing positive integers [14]. Then the constraint (12) gives
the surviving four-dimensional gauge group. The constraint (13) gives the
surviving four-dimensional scalars and eq. (16) is always a solution but in
general not the only one. By setting φâ = ωâ we obtain always a minimum
of the potential. This minimum is given by the chosen embedding of SU2 in
Un.

5. ATTEMPTS TO GENERATE SOn GAUGE GROUP FROM
DIMENSIONAL REDUCTION OVER FUZZY SPACES

5.1. Un(C) Lie algebra and real matrix representation

We first notice that the algebra C of complex numbers can be thought
of as a subalgebra Mτ of the algebra M2(R) of 2 × 2 real matrices. The
subalgebra Mτ is generated by the identity and by the Pauli matrix τ = iσ2.
This element has been chosen because of the relation τT = −τ . The map is
given by

x + iy 7→ 1(x) + τ(y) =
(

x y
−y x

)
(17)
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It is constructed simply by the replacement i 7→ τ . One sees that the
map (17) is an algebra isomorphism of C with Mτ which respects involu-
tion and norm. In particular we notice that M2(R) is not simple.

Next we would like to examine the global SO2 transformation. Just as i
generates the Lie algebra of U1 so generates τ that of SO2. Let ξ ∈ C2 be a
spinor and consider the map

ξ 7→ Λξ, Λ = eτα, α ∈ R. (18)

Since ΛT = Λ−1 we see that ξT ξ is invariant.
To motivate better the notation we recall the Un case. In the U1 case

one replaces a complex number by a complex matrix, both of which have a
star operation with which the corresponding embedding is consistent; if

f ∈ C 7→ F ∈ Mn(C) = C⊗Mn(R) (19)

then
f∗ ∈ C 7→ F ∗. (20)

In the real case one must replace the adjoint by the transpose and C by Mτ ;
if

f ∈ R 7→ F ∈ M2nτ (R) = Mτ ⊗Mn(R) (21)

then
fT ∈ R 7→ F T . (22)

According to the prescription the gauge group consists of elements of the
algebra M2nτ (R) which is a real subalgebra of M2n(R) and spanned by gen-
erators of the form

g = (M (A)
n (R)⊗ 1n) + (M (S)

n (R)⊗ τ), (23)

with S (A) superscripts denoting the symmetric (antisymmetric) square ma-
trices Mn(R) and τ = iσ2 the SO2 generator. The gauge group generated
by g is actually a subgroup of SO2n(R), describable by n2 independent com-
ponents in total, i.e. Un. Therefore we did not manage to generate the SOn

gauge group structure we were looking for.

5.2. Algebra of functions and non-closure of their space

We would like to consider a U1 (SO2) gauge theory in 4+E dimensions,
where E is the number of extra dimensions. Then, as done in the case
of the fuzzy sphere (there E = 2), we would like to reinterpret the higher
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