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Abstract. We consider gauge theories defined in higher dimensions
when the extra dimensions form a fuzzy space. We recall the striking
feature of the appearance of non-abelian U, gauge theories in four di-
mensions starting with an abelian gauge theory in higher dimensions
and discuss the difficulties of extending this property to SO, gauge
theories.
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1. INTRODUCTION

Non-commutative Geometry [1, 2] has been regarded a promising frame-
work for obtaining finite quantum field theories. Quantization of fields over
“spaces” described by infinite-dimensional algebras has proven to be more
subtle than was originally expected. The difficulties encountered prompted
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some to look for models with finite-dimensional algebras, for example ma-
trix algebras. It is interesting to consider these non-commutative spaces as
extra dimensions in higher dimensional theories [12, 13]. A subsequent di-
mensional reduction of the extra dimensions could lead to interesting models
of low-energy particle physics. The dimensional reduction scheme over coset
spaces (CSDR) [3]-[6] gave fruitful results in case of classical commutative
spaces [4], [7]-[11]; its use for the case of non-commutative ones may lead
to important conclusions. As a sequel to [12, 13] we here consider gauge
theories defined in higher dimensions, where the extra dimensions form a
fuzzy sphere [14, 2]. We interpret these gauge theories as four-dimensional
theories with Kaluza-Klein modes. We recall how U,, gauge theories emerge
in four dimensions starting only with a U; in higher dimensions and discuss
the extension of this result to gauge theories based on orthogonal groups.

2. THE FUZZY SPHERE

The fuzzy sphere, S%, is a matrix approximation® of the usual sphere S?
which has been used [14, 2] as a model of non-commutative gravity. The al-
gebra of functions on S? (for example spanned by the spherical harmonics) is
truncated at a given frequency; the product is modified so that the resulting
vector space becomes an algebra of complex matrices. The “space” described
by this non-commutative algebra, endowed with a differential structure and
geometry we refer to as a fuzzy sphere. The algebra itself is that of n x n ma-
trices. More precisely, the algebra of functions on the ordinary sphere can be
generated by the coordinates of R? modulo the relation 22:1 x4xs = 2. Fol-
lowing the notation of previous articles [12, 13] we describe the fuzzy sphere
S% at fuzziness level n — 1 to be the non-commutative “manifold” whose
coordinate “functions” iX; are n x n hermitian matrices proportional to the
generators of the n-dimensional representation of SUy. They satisfy the con-
dition Z§:1 X;X; = ar? and the commutation relations [Xj, X;l = CypaXe
where C;. = €,;,/7 and the proportionality factor o goes as n? for n large.
Indeed it can be proven that for n — oo one obtains the usual commutative
sphere. The coordinates X can be also considered as momenta [2] and have
been designated as p®.

On the fuzzy sphere there is a natural SUs covariant differential calcu-
lus. This calculus is three-dimensional and the derivations e; along X; of
a function f are given by es(f) = [Xg, f]. Accordingly the action of the

2For historical details and literature for the construction consult [2].
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Lie derivatives on functions is given by Lsf = [Xg, f]. In the n — oo
limit the derivations e; become e; = C.;.xz°0¢ and only in this commuta-

tive limit the tangent space becomes twgljiiimensional. The exterior deriva-
tive is given by df = [Xs, f]0* with 0% the one-forms dual to the vector
fields e, < ey, b >= 52. The space of one-forms is generated by the 6%’s
in the sense that for any one-form w = ). fidh; t; we can always write
w = 22:1 wah? with given functions wy depending on the functions f;, h;
and ?;. The action of the Lie derivatives L£; on the one-forms ob explic-
itly reads L£4(6°) = C.;.0° . On a general one-form w = w;0* we have

abc

Lyw = El;(wde&) = [XB, w@] 6% — wdC&i)éHé and therefore
(Lyw)a = [Xg,wa] —WéCéB& ; (1)

this formula is fundamental for formulating the CSDR principle on fuzzy
cosets [12].

The differential geometry on the product space Minkowski times fuzzy
sphere, M* x S%, is easily obtained from that on M* and on SIQ;. For
example a one-form A defined on M* x 512; is written as A = A, dz" + Ay0%
with AM = Au(l’“,Xd) and A; = A&(aj“, X@).

One can also introduce spinors on the fuzzy sphere and study the Lie
derivative on these spinors. Similarly, one can study other (higher dimen-
sional) fuzzy spaces (e.g. fuzzy CPM).

3. FOUR-DIMENSIONAL INTERPRETATION OF HIGHER
DIMENSIONAL ACTIONS

First we consider on M* x (S/R)r a non-commutative gauge theory
with gauge group G = Up and examine its four-dimensional interpretation.
(S/R)p is a fuzzy coset, for example the fuzzy sphere S% (in which case the
groups S and R are given by S = SU(2) and R = U(1)). The action is

Ayy = 4;2 / d*z kTrtrg FynyFMY, (2)
where kTr denotes integration over the fuzzy coset (S/R)p described by
n X n matrices; here the normalization parameter k is related to the size of
the fuzzy coset space. For example for the fuzzy sphere at fuzzyness level
n — 1 we have r?> = V/n? — 17k [2]. In the n — oo limit kTr becomes
the usual integral on the coset space. For finite n, Tr is a good integral
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because it has the cyclic property Tr(fi... fo—1fp) = Tr(fpfi... fp—1). It
is also invariant under the action of the group S, that is infinitesimally
given by the Lie derivative. In the action (2) trg is the gauge group G
trace. The higher-dimensional field strength Fjsn, decomposed in four-
dimensional space-time and extra-dimensional components, reads as follows
(Epuws FuB’ F;); explicitly the various components of the field strength are
given by

Fo = 0,A,—0,A,+ AL A, (3)
Fua = OuAa — [Xa, Au] + [Auv Azl
Fy = [Xa, A3) — [X;, Aa] + [Aa, 4] — C°,; Ac. (4)
Under an infinitesimal G' gauge transformation A\ = A(z#, X%) we have
6A4a = —[Xa, Al + [\ Aa] , (5)

thus Fjsn is covariant under local G gauge transformations: Fyny — Fyny+
[A, Fasn]. This is an infinitesimal abelian U; gauge transformation if A is
just an antihermitian function of the coordinates x#, X%. It is an infinitesi-
mal non-abelian Up gauge transformation if A is valued in Lie(Up), the Lie
algebra of hermitian P x P matrices. In the following we will always as-
sume Lie(Up) elements to commute with the coordinates X%. In fuzzy/non-
commutative gauge theory and in Fuzzy-CSDR a fundamental role is played
by the covariant coordinate, p; = Xz + Asz. This field transforms indeed

covariantly under a gauge transformation, d(ypz) = [\, ¢s] . In terms of ¢
the field strength in the non-commutative directions reads,
Fua = 0upa + [Ap 0a) = Dupa,  Fy = [0a, 03] — CCp00 5 (6)
and using these expressions the action reads
k k
_ 4 2 )2 _
AYM = /d xTr trG <492FN’V + @(DM@G) V(QO)) y (7)

where the potential term V(y) is the F; kinetic term (in our conventions
F; is antihermitian so that V(¢) is hermitian and non-negative)

k
Vip) = _TQQTTtrGZFdi)FdiJ
ab

k a b a b C —
= Tgplrtre ([@a,wg][soa,so”] — 40 PP+ 2r 2<p2> _
(8)
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The action (7) is naturally interpreted as an action in four dimensions. The
infinitesimal G gauge transformation with gauge parameter A(z*, X%) can
indeed be interpreted just as an M* gauge transformation. We write

A, XB) = X (a#, X0 T = N2 (") T T (9)

where 7¢ are hermitian generators of Up, \%(z#, X@) are n xn antihermitian
matrices and thus are expressible as A(z*)®"T", where T" are antihermitian
generators of U,. The fields A(z*)®", with h = 1,...n2, are the Kaluza-
Klein modes of A(z#, X%)®. We now consider on equal footing the indices h
and « and interpret the fields on the r.h.s. of (9) as one field valued in the
tensor product Lie algebra Lie(U,) ® Lie(Up). This Lie algebra is indeed
Lie(Uyp) (the (nP)? generators T"T“ being nP x nP antihermitian matrices
that are linearly independent). Similarly we rewrite the gauge field A, as

Ay (2t X8 = A% (M, XOHT™ = AV ()T T, (10)

and interpret it as a Lie(U,p) valued gauge field on M*, and similarly for
4. Finally T'r trg is the trace over U, p matrices in the fundamental repre-
sentation.

Up to now we have just performed an ordinary fuzzy dimensional re-
duction. Indeed in the commutative case the expression (7) corresponds to
rewriting the initial lagrangian on M* x S? using spherical harmonics on 52.
Here the space of functions is finite dimensional and therefore the infinite
tower of modes reduces to the finite sum given by Tr. The machinery of
CSDR (3, 4] can be used afterwards to reduce the number of the field content
of the theory and possibly obtain realistic particle physics model. The rules
of a non-commutative version of the dimensional reduction in question have
been set in ref [12], whereas the renormalisability of these theories have been
discussed in [13].

4. NON-TRIVIAL DIMENSIONAL REDUCTION AND FUZZY
EXTRA DIMENSIONS

Next we reduce the number of gauge fields and scalars in the action (7) by
applying the CSDR scheme. Since SUs acts on the fuzzy sphere (SUs/Ub)p,
and more in general the group S acts on the fuzzy coset (S/R)r, we can state
the CSDR principle in the same way as in the continuum case, i.e. the fields
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in the theory must be invariant under the infinitesimal SUs, respectively S,
action up to an infinitesimal gauge transformation

Lip=0w,0=W;p, LA=dw,A=—-DW; (11)

where A is the one-form gauge potAential A= Adat+ A0, and W; depends
only on the coset coordinates X* and (like A,, A,) is antihermitian. We
thus write W; = WIA;)‘TO‘, a=1,2... P2 where T' are hermitian generators
of U(P) and (W})T = —W}, here T is hermitian conjugation on the X@’s.

In terms of the covariant coordinate p; = XJ+AJ and of w; = X; — W,
the CSDR constraints assume a particularly simple form, namely

W Aul =0, (12)

Ciie” = [y 24l (13)

In addition we have a consistency condition following from the relation
[La, Lj) = Cai)cﬁé:

[wa, wy] = C.;“we, (14)

where w; transforms as wy — w} = gwag~t. One proceeds in a similar way
for the spinor fields [12].

Solving the CSDR constraints for the fuzzy sphere

We consider (S/R)r = S%, i.e. the fuzzy sphere, and to be definite at
fuzziness level n—1 (n xn matrices). We study here the basic example where
the gauge group is G = Uy. In this case the ws = wy(X?) appearing in the
consistency condition (14) are n X n antihermitian matrices and therefore
can be interpreted as elements of Lie(U,). On the other hand the w; satisfy
the commutation relations (14) of Lie(SUs). Therefore in order to satisfy
the consistency condition (14) we have to embed Lie(SUs) in Lie(U,). Let
Th with h = 1,...,n% be the generators of Lie(U,) in the fundamental
representation, we can always use the convention h = (a,u) with a = 1,2,3
and u = 4,5,...,n% where the T?% satisfy the SUs Lie algebra, [T% T?] =
C’g‘bTé. Then we define an embedding by identifying

Wqg = Ta. (15)

The constraint (12), [w;, A,] = 0, then implies that the four-dimensional
gauge group K is the centralizer of the image of SUs in U,, i.e.

K = CUn(SUQ) = SUn72 X U1 X U1 s
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where the last Uy is the Uy of U, ~ SU, x U;. The functions A, (z, X)
are arbitrary functions of x but the X dependence is such that A,(z, X) is
Lie(K) valued instead of Lie(U,,), i.e. eventually we have a four-dimensional
gauge potential A, (x) with values in Lie(K). Concerning the constraint
(13), it is satisfied by choosing

o = ro(T)wa (16)

i.e. the unconstrained degrees of freedom correspond to the scalar field p(z)
which is a singlet under the four-dimensional gauge group K.

The choice (15) defines one of the possible embedding of Lie(SUsz) in
Lie(U,). For example we could also embed Lie(SU,) in Lie(U,,) using the
irreducible n-dimensional rep. of SUs, i.e. we could identify w; = X;. The
constraint (12) in this case implies that the four-dimensional gauge group is
Uy so that A, (x) is Uy valued. The constraint (13) leads again to the scalar
singlet ¢(x).

In general, we start with a U; gauge theory on M* x S%. We solve the
CSDR constraint (14) by embedding SUs in U,. There exist p, embed-
dings, where p,, is the number of ways one can partition the integer n into
a set of non-increasing positive integers [14]. Then the constraint (12) gives
the surviving four-dimensional gauge group. The constraint (13) gives the
surviving four-dimensional scalars and eq. (16) is always a solution but in
general not the only one. By setting ¢; = w; we obtain always a minimum
of the potential. This minimum is given by the chosen embedding of SU; in
Up.

5. ATTEMPTS TO GENERATE SO, GAUGE GROUP FROM
DIMENSIONAL REDUCTION OVER FUZZY SPACES

5.1. U,(C) LIE ALGEBRA AND REAL MATRIX REPRESENTATION

We first notice that the algebra C of complex numbers can be thought
of as a subalgebra M, of the algebra Ms(R) of 2 x 2 real matrices. The
subalgebra M. is generated by the identity and by the Pauli matrix 7 = ios.
This element has been chosen because of the relation 77 = —7. The map is
given by

z+iy — 1(z) + 7(y) = ( _xy g ) (17)
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It is constructed simply by the replacement i +— 7. One sees that the
map (17) is an algebra isomorphism of C with M, which respects involu-
tion and norm. In particular we notice that My(R) is not simple.

Next we would like to examine the global SO, transformation. Just as i
generates the Lie algebra of Uy so generates 7 that of SOs. Let € € C2 be a
spinor and consider the map

& — A, A=e" aceR. (18)

Since AT = A™! we see that ¢7¢ is invariant.

To motivate better the notation we recall the U, case. In the U; case
one replaces a complex number by a complex matrix, both of which have a
star operation with which the corresponding embedding is consistent; if

fE€C— F e My(C)=Ce M,(R) (19)

then
ffeCw— F*. (20)

In the real case one must replace the adjoint by the transpose and C by M.;
if
feER— F € My, (R) =M, @ M,(R) (21)
then
ffeR— FT. (22)

According to the prescription the gauge group consists of elements of the
algebra Mo, (R) which is a real subalgebra of My, (R) and spanned by gen-
erators of the form

g =M R) ®1,) + (MPI(R) ©7), (23)

with S (A) superscripts denoting the symmetric (antisymmetric) square ma-
trices M, (R) and 7 = ioy the SOy generator. The gauge group generated
by g is actually a subgroup of SOs,(R), describable by n? independent com-
ponents in total, i.e. U,. Therefore we did not manage to generate the SO,
gauge group structure we were looking for.

5.2. ALGEBRA OF FUNCTIONS AND NON-CLOSURE OF THEIR SPACE

We would like to consider a Uy (SO2) gauge theory in 44+FE dimensions,
where E is the number of extra dimensions. Then, as done in the case
of the fuzzy sphere (there E = 2), we would like to reinterpret the higher
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dimensional theory as a 4-dimensional gauge thery with an enhanced gauge
group (U, for the fuzzy sphere at level n—1). However now we want to obtain
an orthogonal gauge group rather than a unitary one. Orthogonal gauge
groups are more interesting than unitary ones in the context of obtaining
phenomenological lagrangians via CSDR. In this section we give some general
comments describing why it is difficult to achieve this result.

We remind that a proper description of a fuzzy manifold can be achieved
by a finite order polynomial expansion over its fuzzy coordinates, together
with a redefinition of the product operation in a way that the closure of
the algebra will be satisfied. This is the case, for instance in the usual S%.
An arbitrary function f(z*, X%) is expressed as a completely symmetrized
polynomial expansion over the fuzzy coordinates i X?%.

f(a#, X%) = fo(a*) + fa(@")X® + % Fa@)Xexb 4 ...

1 5 i
3 fan e (@)X X0 (24)

where the extra 7 has been absorbed by the complex components of the
traceless symmetric tensors f;, ... 5. that are the coefficients of the above
expansion.

In particular the gauge potential A, (z, X) is an antihermitian function.
However now we want A,(z,X) to be also antisymmetric so that it can
be considered Lie(SO,) valued. It is natural to require the gauge potential
A to be odd in the fuzzy coordinates ¢X and the fuzzy coordinates X
to be antisymmetric. In this way A,(z, X) is an antisymmetric. However
antisymmetric matrices X cannot be anymore thought as coordinates of a
fuzzy space. Indeed the product of two antisymmetric matrices is no more
an antisymmetric matrix. Antisymmetric matrices do not form an algebra
under matrix multiplication.



158 P. Aschieri, T. Grammatikopoulos, J. Madore, G. Zoupanos

6. CONCLUSIONS

The Fuzzy-CSDR has different features from the ordinary CSDR leading
therefore to new four-dimensional particle models.

A major difference between fuzzy and ordinary CSDR is that in the fuzzy
case one always embeds S in the gauge group G instead of embedding just R
in G. This is due to the fact that the differential calculus on the fuzzy coset
space is based on dimS derivations instead of the restricted dimS — dimR
used in the ordinary one. As a result the four-dimensional gauge group
H = Cg(R) appearing in the ordinary CSDR after the geometrical breaking
and before the spontaneous symmetry breaking due to the four-dimensional
Higgs fields does not appear in the Fuzzy-CSDR. In Fuzzy-CSDR the spon-
taneous symmetry breaking mechanism takes already place by solving the
Fuzzy-CSDR constraints. Therefore in four dimensions appears only the
physical Higgs field that survives after a spontaneous symmetry breaking.
Moreover, we see that if one would like to describe the spontaneous sym-
metry breaking of the SM in the present framework, then one would be
naturally led to large extra dimensions.

A fundamental difference between the ordinary CSDR and its fuzzy ver-
sion is the fact that a non-abelian gauge group G is not really required in
high dimensions. Indeed the presence of a U; in the higher-dimensional
theory is enough to obtain non-abelian gauge theories in four dimensions.

A very exciting point that should be stressed [13] is the question of
the renormalizability of the gauge theory defined on My x (S/R)r. First
we notice that the theory exhibits certain features so similar to a higher-
dimensional gauge theory defined on My x S/R that naturally it could be
considered as a higher-dimensional theory too. For instance the isometries
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of the spaces My x S/R and My x (S/R)f are the same. It does not mat-
ter if the compact space is fuzzy or not. For example in the case of the
fuzzy sphere, i.e. My x S%, the isometries are SOz, x SO3 as in the case
of the continuous space, My x S2. Similarly the coupling of a gauge the-
ory defined on My x S/R and on My x (S/R)p are both dimensionful and
have exactly the same dimensionality. On the other hand the first theory is
clearly non-renormalizable, while the latter is renormalizable (in the sense
that divergencies can be removed by a finite number of counterterms). So
from this point of view one finds a partial justification of the old hopes for
considering quantum field theories on non-commutative structures. If this
observation can lead to finite theories too, it remains as an open question.
Our hope is that we may be able to construct realistic four-dimensional
theories in case we manage to generate SO, gauge groups from dimensional
reduction over fuzzy spaces. Unfortunately this hope is not realized yet.
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