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Abstract. In this paper, we present our calculation for the elastic scattering of the slow 
positron from atoms. The calculation is performed for He, Ne, Xe and Kr. In the 
calculations we used Random phase approximation. By slowing Dyson equation we 
take into account the correlation effects. Our results are consistent with experimental 
and other theoretical results. 
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1. INTRODUCTION 

The scattering of positrons by atoms is very different from the corresponding elec-
tron-atom scattering. Apparently it may be seen that only a charge of sign in the interac-
tion potential is involved. In the presence of a projectile, the atomic cloud is distorted. It 
is interesting to note that the effect of distortion of the atom is attractive in nature for both 
cases. The importance of the polarization potential in low energy electron-atom scattering 
processes is well known. For electrons, the potential due to polarization tends to add to 
the static potential which, being attractive, tends to cancel the static interaction which is 
repulsive. These differences provide useful information in assessing the relative 
importance of the polarization potential. At low incident positron energies the effect of 
polarization is found to be large enough to cause the positron to be, on the whole, 
attracted to the atom. 

The interaction of a low-energy positron with a many-electron atom is characterized by 
strong correlation effects. Apart from the dynamic polarization of the electron cloud by 
the field of the positron, the positron can also form positronium (Ps), by picking up one 
of the atomic electrons. When the positron energy is below the Ps-formation threshold, 
εPs = I + E1s(Ps) = I − 6.8eV where I is the atomic ionization potential, positronium 
formation is a virtual process. Another fundamental difference between positron and elec-
tron scattering is that the positron, unlike the electron, is distinguishable from the target 
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electrons. In the case of electron scattering, the nature of the total wave function is fully 
guided by Pauli's principle, whereas in the positron scattering case, our knowledge of the 
total wave function is incomplete for small separations. 

In common with electron-atom collisions, many processes can occur during the interac-
tion of positrons with atoms. At low energies, elastic scattering is usually the only open 
channel apart from annihilation which has a relatively negligible effect compared with 
any other processes. As the incident positron energy increases, various inelastic channels 
become accessible, including positronium formation, target excitation and ionization. For 
positron-helium collisions, for example, the elastic scattering remains the only open 
channel for energies below the Ps formation threshold of 17.8 eV [1]. 

During the last 20 years positron-atom collision problems have been studied exten-
sively. The development of new experimental techniques to obtain low energy 
monoenergetic beam has stimulated this surge of activity [2]. A comprehensive review of 
progress in the positron—atom (--molecule) scattering has been given by many research-
ers [3]. In spite of the important advances in recent years, both theoretically and 
experimentally, our knowledge of positron-atom scattering is still incomplete. 

The change of the sign of the charge in e+-atom scattering as opposed to the e−-atom 
scattering has several important consequences. The exchange effects between the pro-
jectile and the target electrons are absent. In contrast to the electron, the positron is at-
tracted by the target electrons and repelled by the nuclei. This attraction must be taken 
into account adequately if accurate results are to be obtained. In the case of positron 
scattering by atoms the static potential energy is positive, whereas the lowest order term 
in the polarization potential is negative. Thus two major components in the e+-target 
interaction tend to cancel each other. 

The slow positron scattering has the specificity that the incident e+ combines with one 
of the electrons in the target to produce a bound positron-electron system (positronium). 
That is to say, a new inelastic threshold appears where positronium formation is energeti-
cally allowed. This inelastic threshold always lies below the first inelastic threshold of 
excitation. 

The theoretical analysis of positron scattering from atomic systems represents a very 
difficult task of scattering theory, requiring that a double perturbative expansion, with 
respect to both e+ - e− and e− - e− Coulomb interactions, respectively, be carried out. In the 
case of e+- He scattering, accurate results have been obtained by the variational methods 
[4,5,6], and the optical potential method [6,7,8,9]. 

In this paper, we have improved a method, which recently was suggested in ref [7,8]. 
This method is based on the many-body theory, namely, the random phase approximation 
(RPA) [9], and a simple "energy shift'' technique was suggested whereby the influence of 
the virtual positronium formation (VPF) channel (i.e. the spatial correlation between the 
projectile and target electrons during the scattering) could be taken into account. All 
notations used in the paper follow those in ref. [7]. 

THEORY 

A conventional treatment of positron scattering from an N-electron target would start 
from the Schrödinger equation for the total wave function for the N+1 particles. In many 
body theory we start instead from Dyson equation [10] 
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 εεε εψ=ψΣ+ )( 0H  (1)

where ψε is the single-particle (quasiparticle) wave function of the positron, ε is its en-
ergy, and H0 is a central-field Hamiltonian of the zero approximation, which describes the 
motion of the positron in the static field of the target. The many-body dynamics in Eq. (1) 
is represented by Σε, a non-local energy-dependent correlation potential. This quantity, 
also known as the optical potential, is equal to the self-energy part of the single-particle 
Green's function of the positron in the presence of the atom [11]. Due to its non-local 
nature, Σε operates on the quasiparticle wave function as an integral operator 
 

'.)'()',( drrrr εεεε ψΣ∫=ψΣ  (2)

For systems containing more than one electron the Hartree-Fock (HF) Hamiltonian 
(without exchange, for the positron) is the best choice. The correlation potential Σε is 
given by an infinite perturbation series in powers of the residual electron-electron and 
electron-positron interaction. Inclusion of the electrostatic interaction in H0 and the use of 
the HF approximation for the target electrons means that the perturbation theory expan-
sion for Σε starts with the second-order diagrams, and that the diagram does not contain 
elements which describe the electrostatic potential (for electrons this also means the ab-
sence of the contributions of the target exchange potential). 

Owing to the spherical symmetry of the problem, Eq. (1) can be solved separately for 
each positron partial wave. So, in particle one deals with radial quasiparticle wave func-
tions, )(~ rPε , related to ψε by ψε(r) = r−1 )(~ rPε Y m(Ω), where Y m(Ω) is the spherical 

harmonic for the orbital angular momentum . Accordingly, the self-energy operator is 
also found for each partial wave separately as  
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Rather than solving the Dyson equation for the quasiparticle wave function in the 
coordinate approximation it is easier to work with the self-energy matrix, 
 

∫ εεεε ϕΣϕ=〉εΣε〈 ')',()(||' *
' drdrrrr  (4)

where ϕε are the positron eigen function of the HF Hamiltonian 
 

eH εϕ=ϕε0  (5)

with a given angular momentum , ϕε(r) = r−1Pε (r)Y m(Ω).Since the static potential of the 
atom is repulsive, all positron states ϕε lie in the continuum (ε > 0). The radial wave 
function is normalized to a δ-function of energy, δ(k2 − k '2), where k is the positron 
momentum. This corresponds to the asymptotic behavior 
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where )0(δ  is the scattering phase shift in the static potential.  
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Fig. 1. Some of the RPA diagrams corresponding to (10) 

The matrix (4) can be used to obtain the phase shifts directly [12]. A "reducible" self-
energy matrix 〉εΣε〈 ε |~|'  is found via the integral equation 
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As an initial approximation for the positron, the wave functions 1N
EP
+  (radial part) are 

used, which were obtained from the "frozen'' Hartree-Fock (HF) atomic state. The excited 
continuum state radial functions are normalized to the δ-functions of the energy. The 
scattered positron wave function can be written as a solution of the following equation 
[3]: 
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where HHF is the radial part of the single-particle HF Hamiltonian PE
N+1 are its eigen-

functions) and Σ (r,r';E) is the optical potential (i.e. the irreducible part of the single-par-

ticle Green function in the coordinate representation). PE
Σ  has the asymptotic form  

 
)]}(

2
1cos[tan)](

2
1{sin[1

, EkrEkr
k

P HFHF
E δ+π−δ∆+δ+π−

π
≈Σ  (9)

where Ek =  is the positron momentum, and ∆δ  is the correlation correction to the fro-
zen-core HF value (δHF) of the phase shift, δ (E) = δHF(E) + ∆δ (E). 
The RPA contribution to the scattering process was determined by using the relationship [3]  
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∆δ RPA(E) makes contribution to the phase shift, due to the RPA optical potential and double 
vertical line represents reduced matrix elements. The expression (3) corresponds to a first 
Born approximation to a "two-potential formula'' [9]. The effect of the Hartree distorting 
field (the first potential) is fully taken into account, in terms of the PN+1 functions. 

For the process which will be considered, the momentum-space T-matrix elements 
can be expressed in terms of the following Lippmann-Schwinger relationship [7]: 
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where the -th radial component of the optical potential have been evaluated at the ε = ki
2 

scattering energy. The optical potential Σ is given by Hartree term augmented by the RPA 
contribution: Σ(εi) = ΣH + ΣRPA(εi). Their matrix elements can be conveniently given ac-
cording to Fig. 1a (the positron is depicted by double line, the electron and hole by a sin-
gle line and the Coulomb interaction by a wavy line): 
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The summation β ≤ F is performed over occupied states, whereas j > F means the sum-
mation is carried out over all discrete excited states and integration performed over the 
continuum. The higher "time-forward'' diagrams of the RPA method (Figures 1b. and 1c.) 
are taken into account by using the wave functions P(β)j

N(LS) for the states ε2 2 (i.e. k2 2) 
(Fig. 1a), calculated in the "frozen'' ion core with the hole in the state β. We estimated the 
contribution of the "time backward'' diagrams (for example, Fig. 1d) - their contribution 
was about 5.3%. Diagram 1e represents the results of the summation of the infinite se-
quence of diagrams, which represents the VPF terms.  

 

Fig. 2. Total cross section for e+-He: solid line our result, dash [7],  
dot-dash [8], dots [9], black square [5] 

In order to introduce the effect of virtual positronium formation VPF (the results of 
the summation of an infinite sequence of the diagrams which represents the VPF terms 
are presented in Figure 1g) it is suggested [7] the "energy shift'' technique by replacing the 
binding energy hole εβ in the denominator of Eq. (5) by εβ

HF − Ep (where Ep = −0.5Ryd). 
The bound state of the positron-electron pair is known as positronium.  
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Fig. 3. Momentum transfer cross section for e+-He : solid line our result,  

dash [7], dot-dash [8], dots [10], black square [6]. 

The binding between a positron and an electron is the attractive Coulomb interaction. 
The energetic of positronium formation is described by the Ore gap model (A.Ore, 
Naturvidenskap Rekko No.9, Univ. Bergen Arbok. 1973). It states that the probability of 
positronium formation is maximum when the positron energy during thermalization lies 
within a gap where no other electronic energy transfer is possible. To capture an electron 
from an atom or a molecule in a medium with ionization energy Ei, the kinetic energy Ep  
of the positron must be greater than Ei − E{ps}, E{ps} being the binding energy of the posi-
tronium. In vacuum, the binding energy of a positronium atom is 6.8 eV but may be 
smaller in the medium. If the positron energy Ep is greater than the ionizing energy Ei of 
the medium, the positronium atom is formed with a kinetic energy greater than its bind-
ing energy and it will rapidly break up in further collisions. Furthermore, above the low-
est excitation energy E{ex}, inelastic processes occur. These processes definitely slow 
down the rate probability of positronium formation. Thus the positronium formation is 
most probable with the energy in the range Ei − E{ps} < Ep < E{ex} which is the Ore gap. As 
suggested in ref. [9] such energy shift is equivalent to lowering the thresholds of the 21S 
and 21P inelastic channels by the same amount ( 6.80eV). We have solved equation (4) 
numerically by using the "improper" calculation for contributions of the RPA matrix 
elements (some of the contributions of estimated RPA third order diagrams).  

RESULTS AND CONCLUSIONS 

To evaluate the diagrams of the correlation potential Σ, one first needs to generate sets 
of electron and positron HF basis states. Evaluation of the diagram requires summation 
over complete sets of electron and positrons intermediate states, including integration 
over the electron and positron continua. 

To perform a numerical calculation, the continuous spectrum can be discretized. The 
simplest way of doing this is by placing the system in a spherical cavity of radius R. Set-
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ting the wave function to zero at the boundary will result in a discrete spectrum of eigen-
states with an approximately constant step size in momentum space. The basis states are 
obtained by expanding the radial wave functions P  (r) in terms of B splines Bi (r)  

 
Fig. 4. Total cross section for e+-Ne:  [15],  [16], ∆ [17], Th2 [19], Th1 our result. 

 ∑= )()( )( rBCrP ii  (13)

where 〉〈= jiij BHBH || )(
0  and 〉〈= jiij BBQ | . Prior to solving Eq. (13) the ground-state 

atom HF Hamiltonian is generated by a conventional HF routine [14]. 

 
Fig. 5. Total cross section for e+-Xe:  [15], ▲ [16], solid line our result 



M. R. NIKOLIĆ, A. R.TANČIĆ 148 

The use of a B-spline basis means that fast convergence is achieved with respect to 
the number of states with a particular orbital angular momentum of the electron and 
positron intermediate states included in the calculation. It has been known for a while that 
calculations of positron-atom scattering converge slowly with respect to the number of 
target angular momentum included in the expansion of the total wave function, notably 
slower than in the electron-atom case [15]. Physically, the slow convergence rate arises 
from the need to describe virtual Ps localized outside the atom by an expansion in terms 
of single-particle orbital centered on the nucleus [16] 

 
Fig. 6. Total cross section for e+-Kr:  [15], ▲  [16], − [17], 1 our result 

The contribution of diagrams with transferred angular momentum  = 0,1,2,3,4 was 
calculated, and when  > 4 the contribution was estimated. This is a clear indication of 
the fact that the approximation (3) (while useful for electron atom scattering), breaks 
down for processes involving positrons, as pointed out in ref. [8,9]. In the lower energy 
range (below about 4 eV) the contribution of the virtual positronium formation (VPF) 
channel (missing from RPA calculations) is most important. 

The elastic scattering crosssection (both total, ∑
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compared with some experimental [5,6] and theoretical results [6,7,8,9,10]. Our previous 
results (RPA(1)) [7] are different from the present results (RPA(imp)). On the basis of the 
obtained results we conclude that the RPA optical potential, characteristic of many-body 
formulations, can be expected to lead to reasonable agreement with experimental results 
for positron-atom scattering processes. 
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ELASTIČNO RASEJANNJE SPORIH  
POZITRONA NA ATOMIMA 

M.R. Nikolić, A.R. Tančić 

U radu smo prikazali naše proračune elastičnog rasejanja sporih pozitrona na atomima 
inertnih gasova (He, Ne, Xe, Kr). Za izračunavanje faznih pomeraja koristli smo aproksimaciju 
slučajnih faza a na osnovu faznih pomeraja računali smo efikasne preseke za rasejanje. 
Korelacione efekte smo uzimali u obzir rešavanjem Dysonove jednačine. Dobijeni rezultati se 
dobro slažu sa eksperimentalnim i drugim teorijskim rezultatima. 


