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Abstract. The frequency-dependent polarizability in the Hartree-Fock (HF) approximation 
has been corrected for true correlation effects by means of many-body theory. The 
polarizability has been computed in the Random Phase Approximation with Exchange 
(RPAE) for He, Ar Xe, Kr, Li, Ca through the second (and some higher) order in the 
correlation potential. With this polarizability as input we obtained the values of some 
atomic interaction constants. 
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INTRODUCTION 

The interaction of electromagnetic radiation with atoms (molecules) is the source of 
much of our experimental knowledge of their properties. Although a rigorous treatment of 
this interaction should be on the quantization of electromagnetic field, the semi classical 
approach yields correct results for many problems of the interest. The clear review of the 
time-dependent perturbations in atomic physics has been given, for example, in [1] [2]. 
Theoretical treatments of the electron-atom scattering, the long-range dispersion energy 
coefficients between atoms and/or molecules, interatomic potentials, optical properties of 
materials, and collision induced spectral shifts, all use polarizability [3] [4] [5] [6]. Despite 
their importance, values of the polarizability α(ω) are not well established for all the atoms. 

From the experimental point of view, the situation is not so good. For example, the 
dipole polarizability has been measured only for some alkali, alkaline-earth, noble gas 
and other atoms [3,4,5]. 

All this suggests that the interest for theoretical description of the many time-dependent 
properties of atomic systems involving harmonic perturbations is not decreased. This is 
primarily because of the recently discovered techniques for solving time-dependent problems. 

The most notable of these methods are the oscillator sum rules [1], the variation-per-
turbation method [2,7], the R-matrix approach [4] (based on the procedure which com-
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bined the summation techniques [1] with the R-matrix solution methods by first replacing 
the sum over intermediate states by differential equations and then solving these equa-
tions by the R-matrix method [8] - and the many-body theory with appropriate diagram-
matic techniques [5,6, 9,10]. The correlation effects which are important in the treatment 
of corresponding time dependent problem can be successfully obtained with help of the 
Brueckner-Goldstone perturbation theory [6,9] and the Random Phase Approximation 
with Exchange RPAE [5,9,10]. 

One of the most important requirements of the conventional perturbation theory (PT) is 
that the exact solution to the unperturbed problem for the ground state, as it is well known, 
cannot be obtained and excited states cannot be known. However, as is well known, one 
cannot obtain exact solutions to the unperturbed problem for any atoms except hydrogen. 
Thus, an important practical requirement of a successful approach is that the perturbation 
method be able to use only an approximate unperturbed solution and the excited states need 
not be explicitly obtained. In the time-independent case several approximate methods 
satisfying these requirements have been formulated [2]. Namely, the static second order 
properties can be calculated with good precision by using the finite field method [11], but 
part of many-electron interaction is not taken into account.  

Many of these methods have been carried over in the time-dependent case. The Har-
tree-Fock (HF) method is such one approximation. From the computational as well as 
purely theoretical point of view the HF scheme provides us with one of the most widely 
extendable methods for solving many-body problems. The coupled HF method for cal-
culation of polarizability (and shielding factors, for example) is the most elaborate ap-
proximation within HF framework and generally yields more accurate values than sim-
pler approximations such Sternheimer or uncoupled HF approximations. Thus, it is often 
used as a benchmark against which more refined calculations are measured and which, 
for example, elaborate variation methods or the many-body theory. 

The interelectron interaction in the HFA is not properly taken into account. The part 
of the interaction not taken into account is called direct or residual. Vres This interaction 
manifests itself in significant corrections to the independent single particle motion of 
electrons (correlations) [5,6, 12,8]. There are two different approaches to the account Vres. 
The first one is known as the perturbation approach to the Vres − for example the 
Brueckner-Goldstone perturbation theory [1,12]. The other approach is often used under 
which terms of all powers of Vres matrix elements are accounted for, but in each order q a 
limited number of this expansion is retained. A version of this method is the RPAE 
method [5,9,10]. 

The main problem of this method is to find the effective interaction that may be 
obtained as a sum of a certain sequence of perturbation theory diagrams. 
In this papaer we calculated dynamic polarizability for atoms by using improved version 
of the RPAE method [13]. 

Atomic units system is used throughout the article, unless otherwise stated; all nota-
tions follow those in ref. [13].  
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2. THEORY 

2.1. Polarizability 

Generally, polarizability, in linear approximation, originates from additional dipole 
electric momentum that is induced by the action of an external time dependent 
electromagnetic field of the system of electric charges. The dynamic multipole 
polarizabilities α(ω) is defined as [1]: 
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where M2L is an operator for the 2L-pole of the system, while ωn = En − E0 denotes the 
excitation energy and ω is the photon energy (ω(au) = 45.5633 / λ(nm)). Summation over 
n includes integration over continuous spectrum and summation over the occupied states. 

If the length of the light that interacts with the atom is greater than the dimension of 
the atom (λ >> a0 ∼ 10−8 cm), the electric field intensity E is smaller than the intensity of 
the inner atom field (E << E0 ∼ e2/a0

2 ∼ 109 V/cm), and the frequency ω is not so close to 
the absorption frequency, then we can describe the interaction of field with atom by 
adding perturbation energy that contains dipole electric momentum of atom's electrons to 
the basic Hamiltonian. The dipole polarizability (DP) αd describes the corresponding 
energy shift of an atom: 
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The dynamic dipole polarizability (DDP) is based on the Cramers-Kroning relations 
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where the polarizabilities are expressed in au (α(au) = 6.74832 α(
0

3A )). Fn = 2ωn |〈0|d|n〉|2 
is either oscillator strength (OS) for discrete transition or density of OS in the continuous 
spectrum; d is the momentum operator of the system. 

The static DP is given by the expression (3) with ω = 0.  
If the following relations are used 
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where v , Ĥ  and r̂  are operators of velocity, total system Hamiltonian and coordinate, 
respectively. The other form of DDP can be written as: 
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This form of DDP is velocity form α∇
d, and expression (3) represents length form αr

d. 
When we use eigenfunction of the exact Hamiltonian as basic functions, expressions for 
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αr
d and α∇

d are identical. In the HFA αr
d and α∇

d are not equivalent and difference between 
them is the measure of the non-locality of the self-consistent potential. These two forms 
coincide in the RPAE. In the one-electron approximation DP can be represented by 
diagram Fig. 1. 

 
Fig. 1. The dipole polarizability in one-electron approximation.  

The solid line with arrow to the right (or left) corresponds to particle (or 
vacancy). Dashed line represents the external field.  

DDP can be found if the cross section for the photo ionization in dipole approximation 
is known. The transition is determined by 22211 )()( Enhole →ν (an electron in an excited 
or continuous spectrum state). Namely, if we introduce the spectral distribution function 

∑ ωαπω=ω−ωδ≡ω
n

dnnFg )(Im)/2()()( , then the dispersion relations between the real 

and imaginary part of DDP my be obtained; that leads to the expression  [5,6]: 
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where c is the light velocity. The photo-ionization cross section and the oscillator strength 
are defined by [6]: 
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where N1 is the electron number of the ν1 th sub shell and dν1ν2 is the reduced dipole 
matrix element in the HFA or RPAE. 

The knowledge of polarizability makes it possible to find the interaction potential of a 
heavy particle with an atom. In the first two orders of perturbation theory in Coulomb 
interaction this potential is determined by diagrams, part of which being presented in Fig. 2.  

 
Fig. 2. The interaction of a heavy particle (double line) with an atom (the first two 

orders of the perturbation theory). The wavy line with a cross at the end 
represents the Coulomb interaction with the nucleus.  
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At large distances from an atom the contribution of the first, forth and fifth diagrams 
(Fig. 2) lead to a potential that decreases exponentially. The contribution of the third 
diagram defines the polarization potential (at large and at small distances): 
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αm(0) is called the static monopole polarizability. By using this quantity, the interaction 
potential of the heavy particle with the atom at small distances can be defined. Also, using 
αm(0), one can calculate the constant d in the expression of the phenomenological 
polarization potential U(r) = −αd(0) / [2(r2 + d2)] (where )0(/)0( mdd αα= ). The solution 
of the Schrödinger equation with the potential (8) gives the scattering length 

2/)(/)0(1 2 ddctgdL d πα+=  and according to the experimental values, we may test the 
validity of our calculated values of αm(0). 
The correction to the HF energy of a deep hole, which occurred because of the interaction 
with outer sub shells, is determined by the monopole polarizability of the outer shells, too 
[12]: 
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2.2 Atomic interaction constants 

Although more than seventy years have elapsed since the first quantum-mechanical 
interpretation of dispersion force by London [14] the importance of the theory of 
interatomic (molecular) force is now receiving much recognition due to recent 
developments in physical methods for observing various long-range interactions [5]. 
When attempting to find the interaction potential of atoms, the basic problem is the 
nonconvergency involved in the series expansion in reciprocal powers of interatomic 
distance R. Knowledge of the distribution of the dipole oscillator strengths F allows us to 
find the interaction potential of two neutral atoms at large distances. The dispersion 
interaction of the pair of non-excited atoms at large distances R may be presented by: 
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In the case of the three-body interaction, the first term in the series expansion of the 
energy is given by 
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where ψAi are the angles of the triangle A1A2A3. 
Due to the electro neutrality of atoms (A1 and A2, for example) the total contribution 

of first and second order diagrams presented in Fig. 3a,b (excluding the last diagrams in 
Fig.3) leads to a potential that decreases exponentially. 
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With some simplifications the contribution of the last diagram (Fig. 3b) is [5]: 
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where the notations are the same as in ref. [13]. Substituting the dipole matrix elements, 
we find the coefficients C6 in RPAE [8], or C6

 im in improved RPA (imRPA). This version 
of RPAE includes some contribution of the higher order diagrams [5,13]. The next term 
in the expansion of the interatomic potential is proportional to R−8 − C8R−8. That is the 
result of the quadruple – dipole interaction between atoms. There are significant difficul-
ties in calculating C even in the case of simple atoms. Because of that, different semi-
empirical methods have been developed. 

 
(a) 

 
(b) 

Fig. 3. The first (a) and second (b) order of the perturbation theory in the Coulomb 
interaction between two neutral atoms. 

When we recognize the polarizability as a function of imaginary frequencies, we can 
calculate the dispersion coefficients with the help of the Casimir-Polder integral [15] 
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DDP with imaginary argument can be calculated over density of oscillator strength or 
over adequate analytical approximation. In the second case, the problem can be solved by 
Pade approximants [16]. 

2.3. The RPAE method 

A lot of calculations of DDP in HFA have been done. Many of them are not good 
because there are great differences between αr

d and α∇
d. The agreement with experiments 

is also bad. There are a few calculations of quadruple and octopole DP. Some conclusions 
are valid for HF calculation of the interatom constants.  

In our calculation we used RPAE method with HF as basic approximation [8]. In the 
approximation RPAE, polarizability is determined by the infinite series of the diagrams, 
which are presented in Fig. 4. 
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Fig. 4. The dynamic dipole polarizability in the RPAE.  
The shaded part denotes the 2L-pole matrix element [5]. 

The dipole matrix element in the RPAE approximation satisfied the relation [5]: 
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where νi denotes the quantum numbers (n, ,m,σ), U are the antisimetrised Coulomb matrix 
elements and F is the Fermi level. Detailed discussion of the choice of the wave function and 
calculations are given in ref. [5,6,8,13]. DDP, αd

RPAE(ω), in the RPAE is given by 
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If 0)(ωDn  is calculated on the energetic shell (i.e. when nω≈ω ) we get: 
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We calculated DDP by using wave functions of the ground and excited states ϕN(LS) 
obtained in the HF approximation [6]. 

The method we used allows us to calculate the polarizability near the discrete 
excitation levels too, using the expression: 

 )()()( 122 ωα′+ω−ω=ωα −
dnnd F  (17)

where α'd (ω) is the non-resonant part of the polarizability. 

3. RESULTS AND DISCUSSION  

The calculations of DDP are performed in the following way: first the wave functions 
of the basic and excitation atomic state are calculated )(, ωα ∇r

d  in HF approximation.  
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Table 1. The static polarizability of atoms 

Atom Dipole polarization Quadruple polarization Oktopol polarization 
He 
[5] 
Our res. RPAE 
[19] 
Exp. [18] 

 
1.256 
1.34 
1.30 
1.38 

 
 
2.23 
2.27 

 
 
8.34 
9.50 

Ne 
[5] 
Our res. RPAE 
[19] 
Exp. [18] 

 
2.30 
2.47 
2.36 
2.66 

 
5.64 
6.21 
6.36 

 
 
28.5 
33.9 

Ar 
[5] 
Our res. RPAE 
[19] 
Exp. [18] 

 
10.70 
10.82 
10.75 
11.10 

 
40.04 
45.50 
48.00 

 
 
418 
515 

 
Fig. 5. Results of calculations DDP αd

RPAE(ω) for He,Ca,Xe and Kr atoms.  
Solid line denotes our improved calculation; dashed line[5]. 

After that integral equation for DDP (14) is solved. In this way we calculated 
αd

RPAE(ω). The programs used are given in [6]. This method makes it possible to calculate 
the polrarizabilities in the energies ω greater than the ionization potential when 

)()]4/([)(Im ωσπ=ωα cd . In this paper, contrary to our earlier results in [17] (in Tamm-
Dancof approximation) we take into account the contributions of some higher order 
diagrams [13]. In Tab. 1, calculations and some experimental values are given of static 
polarizability for He, Ne and Ar atoms (dipole, quadruple and octopole). 



 Dynamic Responce of Some Atoms: Many-Body Calculations 137 

 
Fig. 6. Results of calculations αd

RPAE(ω) for Ar atom: the full fat line represents our improved 
calculations; dashed lines are DDP in «r» and «∇» (i.e. length L and velocity V form, 
respectively), and thin solid line represents the RPAE calculation [5]. 

Contributions of different transitions in calculation of DDP for atom Ne are shown in 
Tab 2. 

Table 2. Contributions of different transitions to αd (ω). 
(Numbers in the brackets are power of 10)  

ω = 0.0 ω = 0.4 
Transitions r

dα  
θαd  RPAE

dα  r
dα  RPAE

dα  RPAE
dα  

2p6-2p53d1  0.3685 (-1)  0.2832 (-1)  0.3645 (-1)  0.4934 (-1)  0.3794 (-1)  0.4887 (-1) 

2p6-2p54d1  0.1869 (-1)  0.1428 (-1)  0.1833 (-1)  0.2451 (-1)  0.1873 (-1)  0.2412 (-1) 

2p6-2p55d1  0.1016 (-1)  0.7735 (-2)  0.9885 (-2)  0.1322 (-1)  0.1007 (-1)  0.1247 (-1) 

2p6-2p5εd  0.1788 (1)  0.1265 (1)  0.1634 (1)  0.1956 (1)  0.1394 (1)  0.1801 (1) 

2p6-2p53s1  0.3438 (0)  0.3151 (0)  0.3502 (0)  0.5303 (0)  0.4867 (0)  0.5403 (0) 

2p6-2p54s1  0.4545 (-1)  0.4157 (-1)  0.4500 (-1)  0.6157 (-1)  0.5622 (-1)  0.6095 (-1) 

2p6-2p55s1  0.1497 (-1)  0.1367 (-1)  0.1491 (-1)  0.1974 (-1)  0.1805 (-1)  0.1966 (-1) 

2p6-2p5εs  0.1904 (0)  0.1735 (0)  0.2041 (0)  0.2191 (0)  0.2001 (0)  0.2337 (0) 

2s2-2s13p1  0.2903 (-2)  0.2025 (-2)  0.1887 (-2)  0.3015 (-2)  0.2133 (-2)  0.1981 (-2) 

2s2-2s14p1  0.7525 (-3)  0.6467 (-3)  0.6365 (-3)  0.7885 (-3)  0.6773 (-3)  0.6672 (-3) 

2s2-2s15p1  0.3345 (-3)  0.2862 (-3)  0.2853 (-3)  0.3501 (-3)  0.2994 (-3)  0.2994 (-3) 

2s2-2s1εp  0.5020 (-1)  0.4433 (-1)  0.4932 (-1)  0.5118 (-1)  0.4916 (-1)  0.5033 (-1) 
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Fig. 7.  Results of calculations αd

RPAE(ω) for Li and Ca atoms. The solid fat lines represent our 
improved RPAE calculations, while the other curves are the earlier RPAE results [5].  

Also, in Fig. 8 DDP is presented as a function of imaginary frequency: the solid fat 
lines are our RPAE results, while other curves are semi-empirical results from ref. [16]. 

 
Fig. 8. α(iω) for some atoms. The solid fat lines are our RPAE result (Xe,Kr,Ar);  

other curves are from ref. [16].  

The main conclusions after DDP calculations are as follows: 
− The principal contribution comes from the main transition of the outer sub shell. 
− The role of the discrete excitations (for small energies ω, especially) in noble gas at-

oms is negligible, whereas for alkali and alkali-earth atoms it is decisive [5,7]. 
− According to the results of DDP for He, we can see that the main contribution at 

low-level energies gives transition 1s2 → 1s12p1. At higher energies, contributions of the 
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resonant transitions become negative and contributions of transitions in the continuum 
remain positive when energies increase. When energies keep increasing, DDP decreases 
by absolute values. 

− In Fig. 5., we see oscillations occurring from differences in contributions of discrete 
transition and transitions in continuum spectra. 

− The main contributions to DDP in Ne, Kr, Xe atoms give transitions np6 → np5εd. 
The contributions of electron transitions on discrete levels are about 25%. In the case of a 
Ne atom, the main transitions are transitions from the highest p sub shells to the lowest 
discrete s levels. 

− In the case of alkali and alkali-earth atoms the main contributions in DDP give dis-
crete excitations (low energies). In the case of a Ca atom the main contribution originates 
from the transition 4s2 → 4s14p1. 

− The calculations of the quadruple and oktopole polarizability for Ne, Ar, Kr and Xe 
atoms show that the greatest contribution to polarizability results from transitions from 
the above-filled np6 subshell in the continuum in the f state. The contributions of the 
electron transitions in the discrete spectrum are about 20% of the total α(ω). 

By indirect comparison it may be seen that our calculation of DDP for He, Ne, Ar, Kr, 
Xe, Li and Ca atoms are in good agreement with other theoretical results [2,3] and ex-
perimental data [21]. 

By using the improved RPAE approximation we calculated C6 coefficients for some 
pairs of atoms (C6

im). Results of calculations show that it is very important to take into 
account the contribution of the higher order diagram. A better agreement with experi-
ments is obtained (Tab. 3). 

Table 3. Coefficients C6 

Pair of atoms C6 [22] C6 [23] C6
im C6 [24] C6 [25] C6 [19] 

He-He 1.24 1.46 1.35 1.4 1.82 1.43 
Ca-Ca 2370  2035 1600   
Ar-Ar 52.0 64.7 65.1 62 69.9 64.5 

4. CONCLUSION  

We may conclude that the static second order properties can be calculated, for 
example, with good precision by the use of the finite field method [11], but the 
correlation effects, which can contribute significantly to the property values, can be 
incorporated by the finite MBPT by the finite configuration interaction method [7] or by 
the presented RPAE method. 

For dynamic properties, reasonable results can be obtained by the use of time –
dependent coupled HF method [2,26], but this method only incorporates "apparent" (or 
self-consistency) effects, while true correlation effects are often by no means negligible. 
True correlation effects in frequency-dependent polarizability can be obtained by MBPT 
methods, or with the help of diagrammatic techniques used in the RPAE method the 
results of which are presented in this article.  

The results of our calculations DDP and coefficients of the long-range interaction 
between atoms suggest that it is necessary that many-electron correlations be taken into 
account. The improved RPAE is more consistent with experiments compared to earlier 
results which are performed in the simplified version of the RPAE method. 
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DINAMIČKE KARAKTERISTIKE NEKIH ATOMA. 
MNOGOČESTIČNA IZRAČUNAVANJA 

A. R. Tančić, M. Nikolić  

U radu se istražuje frakventna zavisnost dinamičke polarizabilnosti u Hartri-Fokovoj 
aproksimaciji i korekcije koje nastaju zbog korelacija. Polarizabilnosti su računate i u 
aproksimaciji slučajnih faza sa izmenom za atome He, Ne, Ar, Kr, Xe, Li I Ca sa ukjlučivanjem 
dijagama drugog reda (i nekih viših) pri izračunavanju korelacionog potencijala. Dobijene 
polarizabilnosti su iskorišćene da se izračunaju vrednosti nekih atomskih interakcionih konstanti. 


