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Abstract. In this paper, the detection limits for radioactivity counting are determined. 
Several decision rules are presented and applied to calculate the critical value. The 
value obtained by the best approximation for the alpha particles counting was used to 
evaluate the minimum detectable concentration in water, soil and air. 
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1. INTRODUCTION 

Environmental radioactivity measurements may involve a material containing very 
small amounts of the radionuclide of interest. Measurement uncertainty often makes it 
difficult to distinguish such small amounts of radionuclides. Thus, an important 
characteristic of a measurement process is its detection capability, which is usually 
expressed as the smallest concentration of the radionuclide that can be at a certain 
confidence level distinguished from zero. 

Effective experiment planning requires an accurate insight into the detection capabilities 
of the measurement procedures. The measure used to describe radioactivity detection 
capabilities is the minimum detectable concentration (MDC). The minimum detectable 
concentration is defined as an estimate of the true concentration of an analyte required to 
give a specified high probability that the measured response will be greater than the critical 
value [1].  

There are still disagreements about the proper uses of the MDC concept. Some 
authors define the MDC strictly as an estimate of the nominal detection capability of a 
measurement process [2]. The opposing view is that the "sample specific" MDC is a 
useful measure for the detection capability of the measurement process, not just in theory, 
but in practice as well. For instance, NUREG/CR-4007 states plainly that "the critical 
(decision) level and detection limit (MDC) do vary with the nature of the sample" and 
that "proper assessment of these quantities demands relevant information on each sample, 
unless the variations among samples are quite trivial" [3]. 
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Neither version of the MDC can legitimately be used as a treshold value for a 
detection decision. The definition of the MDC presupposes that an appropriate detection 
threshold (i.e. the critical value) has already been defined [1].  

THEORY 

To detect an analyte in an environmental sample is to determine, to measure or to 
calculate its measurable quantity. The detection involves a choice between the "null 
hypothesis" H0: the sample doesn't contain the analyte, and the "alternative hypothesis" 
H1: the sample is not analyte-free. While testing the hypothesis there are two possible 
types of errors. Error type I (false positive) occurs if one rejects the H0 when it is true, 
and error type II (false negative) occurs if one fails to reject the H0 when it is false [4].  

In radioactivity counting, the response variable of radionuclide (analyte) concentration 
is an instrument signal, usually the net number of counts observed (Ns). It is obtained by 
subtracting the estimated background, i.e. the blank signal (Nb), from the gross number of 
counts (Ng). To justify the rejection of the H0, the value of Ns must exceed a certain treshold 
value, Lc, called the critical value of net counts, or decision treshold [5]. 

The critical value Lc is defined symbolically by the relation: 
 

α≤=µ> ]0 [ cs LNP  (1)

where P denotes the probability, µ is the true value of the net signal, and α denotes the 
significance level, or the specified probability of a type I error (typically, α = 0,05) [6]. 

The minimum detectable concentration (MDC), xD, has been usually [1], [4] estimated 
by calculating the minimum detectable value of the net instrument signal, LD, i.e. 
detection limit. It is defined by the relation [6]: 
 

β==µ≤ ] [ Dcs LLNP  (2)

where β is the probability of an error type II, usually chosen to be 0,05. Then, the MDC is 
simply obtained by dividing LD with the sensitivity constant: xD = LD / A [1]. 

To determine the value of Lc that satisfies the definition (1), one has to know the 
distribution of the counting data (Ns) under the H0. If that distribution is approximately 
normal, within the well-known standard deviation σ0, estimated by replicate blank 
measurements, the critical value of net counts is: 
 

01 σ= α−zLc  (3)

where z1−α denotes the (1 − α)-quantile of the standard normal distribution. 
If the mean blank count is extremely low, radiation counting data approximately 

follow the Poisson model. Then, whenever the blank count rate Rb is well known, the 
critical gross count, yc, equals the smallest nonnegative integer n, such that: 
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where ts is the count time for the tested sample. The decision treshold, Lc, is simply 
obtained as yc − Rb ts [1]. 
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At somewhat higher count levels the Poisson distribution may be approximated by a 
normal distribution, and both models could be applied [7]. So, using the Poisson model in 
calculating the σ0, the critical net count is given approximately by the equation: 
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where tb is the count time for the blank. The bR~  is an estimated value of the blank count 
rate (as, in practice, Rb is usually not well known), which is the weighted average of the 
measured blank and the gross count rates (because the gross one is the blank, under H0). 

Due to the corresponding statistical weights, wb and wg, three different decision rules 
have been derived. The combination: wb = 1, wg = 0, leads to the commonly used 
expression for the critical net count (formula A, in MARLAP [1] notation), equivalent to 
the equations published by several authors [2], [8], [9]: 
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Two other expressions, obtained for the other values of wb and ws, are formula B [10]: 
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and formula C [5], [11]: 
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For low mean blank counts, Stapleton aproximation [12] appears to outperform all of 
the above approaches. The critical value is: 
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where d is the parameter with a near-optimal choice d = 0,4, for α = 0,05. 
Poisson counting statistics also permits an "exact" test [11] for radionuclide detection, 

in which error type I rate is guaranteed to be no greater than the chosen value of α, 
although it may be less. In the nonrandomized version of the test [12], the H0 is rejected if 
Ng > yc, where yc is equal to the smallest nonnegative integer n, such that: 
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Then, the critical net count is yc − Nb (ts / tb). 
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If the net signal Ns is normally distributed, the minimum detectable net signal, LD, is 
determined implicitly by the equation: 
 

)(2
1 DscD LNzLL =µσ+= β−  (11)

where )(2
Ds LN =µσ  denotes dispersion of the measured net signal, when the true mean 

signal equals LD. This equation is the basis for the formulas that are commonly used for 
LD, when the Poisson-normal approximation is assumed [1], [12]. If the only source of 
the signal variance considered is the Poisson counting statistics, the detection limit LD is 
determined from the formula: 
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with Lc calculated using one of above presented formulas. 

EXPERIMENT 

The alpha particle counting was performed by the gas-flow proportional α / β counter 
LB 5100, series III, Tennelec, USA, with the α − counting efficiency ε = 0,41. The gas-
flow detector uses P-10 mixture of 10% methane and 90% argon. The count times ts and 
tb in all experiments were 3600 s. 

The detection limits were determined for drinking water, soil and air. After sampling, 
the tap water sample was preserved by acidification to pH 2 by nitric acid. The 500 ml 
aliquot was extracted and evaporated to constant mass, according to the procedures 
described in reference [13]. The soil sample was heated at 480°C for 3 h. The air sample 
was obtained by the air sampler operating at airflow rate of 100 l/min, for 50 h (the 
fractional efficiency of the filter was 90%). After the sampling, 222Rn and 220Rn short-
lived progenies were allowed to decay for 5 days. Mass was determined on Scaltec SBC 
31, with the accuracy of 1 mg. 

RESULTS 

In order to estimate the mean blank count rate Rb for α − particle counting, 20 meas-
urements of the blank sample have been performed. The obtained results were the following: 

24   13   27   21   19   15   13   17   13   20   25   16   17   17   22   11   10   17   20   26 

The mean value of the blank counts, calculated from the obtained data was 15,18=bN , 
and the corresponding variance 66,242 =bS . The χ2 − test showed that bb NS 2 , for 19 
degrees of freedom, was not significant (0,3 > p > 0,1). This means that the above set of 
data can be approximated by the Poisson distribution, therefore the formulas (3)-(12) for Lc 
and LD could be applied. 

As stressed previously, if the mean blank count rate, Rb, is well defined by the 
calculated experimental mean value of Nb ( 3105~ −⋅=bR  counts/s), the pure Poisson model, 
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i.e. inequation (4), could be applied. Using the Fortran program, we have found that the 
condition (4) (with α = 0,05) is fulfilled for n ≥ 26. The critical net value is then: 
Lc = 26 – 18,15 = 7,85 counts. 

Applying the formulas (6), (7) and (8), with z1−α = 1,645, we have calculated Lc = 9,91, 
Lc = 11,36 and Lc = 11,36 counts, respectively. The Stapleton approximation (the equation 
(9)), gives the critical value Lc = 11,38 counts. Using the exact test (the inequation (10)), we 
have obtained the result yc = 30, which implies that Lc = 11,85 counts. 

The value of Lc determined either by formula C or Stapleton approximation appears to 
be the most correct for our experiment, where neither too high nor too low value of bN  is 
observed. Namely, formula A is recommended for higher values of Rbts, where error type 
I rate closely approaches the chosen value of α [12]. Also, we have rejected the pure 
Poisson counting result, Lc = 7,85 counts, since it is only applicable for a well defined 
true Rb [1], which is not guaranteed in our case of only 20 measurements. 

In further calculations, the decision treshold value Lc = 11,36 counts is substituted in 
equation (12), giving the detection limit LD = 24,15 counts. 

The MDC, actually representing the minimum detectable activity concentration [4] (in 
Bq/l, Bq/kg or Bq/m3) is then determined as: MDC = LD/A, where sensitivity A in our 
case is the product of: the detector efficiency ε, the sample counting time ts and the 
analysed fraction of volume (or mass) of the sample. 

CALCULATION OF MDC FOR WATER, SOIL AND AIR 

Water − After evaporating the volume V = 0,5 l of drinking water, we obtained 
m1 = 0,155 g for the solid residue, and separated m2 = 0,118 g for further analysis. We 
observed 24 gross counts, for ts = 3600 s, which implies that Ns = 24 – 18,15 = 5,85 
counts. Comparing this result with the critical value, it can be concluded that the signal is 
not detected, as Ns < Lc. The MDC for the drinking water is: 
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This value meets the requirement of American Federal Register [14] for drinking 
water MDC, which is 0,111 Bq/l, and it is close to the value of MDC = 0,037 Bq/l, of 
Brookhaven laboratory [13]. 

Soil − After heating the initial mass m1 = 17,419 g of the soil, the mass m2 = 12,225 g 
remained, and m3 = 0,975 g was separated for α − counting. The number of observed 
gross α − counts was Ng = 56, leading to the value Ns = 37,85 > Lc, and the net signal was 
then considered as detected. The MDC for the soil was calculated as: 
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Air − Five days after the sampling, the air filter was analysed for total α activity. The 
activity concentration of C = 1,28⋅10-4 Bq/m3 was detected. The minimum detectable 
concentration of the air particulate was then calculated as [15]: 
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MDC 
fs

D

KFtt
L

ε
= =6,06⋅10-5 Bq/m3, 

where F denotes the airflow rate, K is the fractional filter efficiency and tf denotes the 
duration of the air sampling.  

CONCLUSION 

In the performed α − counting experiment, the observed blank counts follow the Poisson 
statistics. The most applicable Poisson-normal approximations for detection limits evaluation, 
for the obtained experimental mean value of the blank counts, appeared to be those of 
Nicholson (formula C) and Stapleton. Comparing the measured net signal with the calculated 
critical value, it was concluded that there are no α −emmiters in drinking water, contrary to 
the detected presence of the α −emmiting radionuclides in the soil and in the air. 

The presented results indicate that the minimum detectable concentration (MDC) is not 
only instrumentaly influenced by the blank signal, the counting efficiency and the counting 
time, but it also depends on the characteristics of the sample (the fraction of volume or 
mass, etc). For three samples, drinking water, soil and air, analysed in this paper, the calcu-
lated values of MDC are: 0,043 Bq / l, 11,7 Bq / kg and 6,06 × 10−5 Bq/m3, respectively. 
The differences between the obtained results originate from different amounts of the 
analysed samples that were used to cover the detector surface in a thin slice geometry.  
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GRANICE DETEKCIJE ZA BROJANJE ALFA ČESTICA 

G. Manić, V. Manić, D. Vesić 

U radu su određene granice detekcije za merenje radioaktivnosti pomoću brojača α / β čestica. 
Prikazana su različita pravila odluke i primenjena pri izračunavanju kritične vrednosti. Vrednost 
dobijena korišćenjem najbolje aproksimacije za obavljeni eksperiment brojanja α čestica, 
primenjena je u proračunu minimalne merljive koncentracije za: vodu, zemlju i vazduh. 


