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Abstract.The influence of the shape of a sample on the type of uniform dipole collective 
electrons oscillations is discussed. In samples of a bulk shape uniform bulk dipole 
oscillation (Langmuir oscillation) cannot exist. It exists in samples of a thin slab shape 
only. As uniform bulk dipole oscillations cannot penetrate ellipsoidal samples of 
conductive material, they exist in the surface layer of a sample only (Mie oscillations). 
Frequencies of Mie oscillations are calculated for a sample of the shape of an arbitrary 
ellipsoid.  

1. INTRODUCTION 

Collective oscillations are the most prominent features of the excitation spectrum of 
all the many particle systems, from macroscopic bodies like metal samples, to clusters, 
molecules, atoms and nuclei.  

Collective oscillations determine to a large extent the cross-sections of interaction of 
all the above-mentioned objects with electromagnetic radiation and fast charged particles. 
For macroscopic bodies (solids, liquids and gases) they present the density oscillations, or 
acoustic waves, which are known best of all. The frequency of acoustic waves, ωs, is 
known to be proportional to the wave-vector, k.  

It has long since been known, however, that in the macroscopic body of a subsystem, 
formed by light charged unbound particles with infinite range Coulombic repulsive inter-
action, the ordinary density or acoustic waves cannot exist. Instead, so-called plasma or 
Langmuir oscillations take place [1,2], with a completely different relationship between 
the frequency, ωp, and the wave-vector, k, from that of the frequency of acoustic waves. 
For small k it has the following form [3]: 

 ωp
2 ≈ ωp0

2 + αk2, (1) 

where the so-called Langmuir or plasma frequency is presented by the following relation: 

 ωp0
2 = 4πe2n/εm. (2) 
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In Eqs. (1) and (2) α is some constant, e and m are the value of the charge and the 
mass of the particle, n is the number of the particles per unit volume and ε is the dielectric 
constant of a conductor lattice (without the contribution of the conductive electrons). For 
metals it is usually assumed that ε = 1.  

Langmuir oscillation is the simplest mode of a bulk uniform plasma oscillation in a 
conductor. It influences many physical properties of a sample, e.g., optical properties.  

Plasma oscillations exist, as follows from the name, in plasmas and in electron gasses 
or liquids of metals and semiconductors [3, 4].  

Eq. (1) was derived for a thin slab of a conductor [5] and for the infinite conductive 
media [6]. Hence it is valid for bulk samples of arbitrary shape when the wavelength, λ, 
is much shorter than the size of a sample, a (1 « ak). In this case the infinite media ap-
proximation is reasonable. For long enough wavelengths the frequency, ωp, according to 
Eq. (1) is almost constant.  

It is worthwhile to emphasize that collective frequencies, presented by Eqs. (1) and 
(2), do not include Planck's constant. Therefore the values of the frequencies can be un-
derstood in the frame of the classical approach (see, e.g. [6]). Quantum picture is impor-
tant when we are interested in discrete quantum levels of the oscillations. The frequencies 
of the oscillation are the same in quantum and classical approach (compare results in [4] 
and [6]). But classical approach cannot give discrete quantum levels.  

Two types of motion should be distinguished, the surface and the bulk oscillations. 
The surface oscillations are never accompanied by variation of the electron density, while 
some of the bulk oscillations are the oscillations of the density.  

Mie had demonstrated long ago that in a bulk conductive sample of spherical shape 
the dipole oscillation of the collective electrons as a whole relative to the lattice of the 
ions does not exists [7]. Instead, the surface oscillation of a frequency √3 times smaller 
than ωp0 (Mie oscillation) exists in the bulk conductive samples of a spherical shape [7]. 
This occurs because oscillations with frequencies smaller than ωp0 cannot penetrate in the 
bulk of a conductive sample [5]. They decay in the surface layer of a sample [5]. The 
uniform (with wave-vector k = 0) dipole oscillation of the collective electrons as a whole 
relative to the lattice of the ions exists in thin slabs of conductive materials only [5] (see 
Fig. 1). In samples of more bulky shapes the restoring force acting on the collective elec-
trons is not strong enough to provide frequency equal or larger than ωp0 [7].  

Small elongation of the sphere leads to the splitting of a single Mie frequency into 
two, with a small difference between them [8].  

 
Fig. 1. Uniform dipole oscillation of the collective electrons as a whole relative to the 

lattice of the ions in the thin slab of a conductive material. Grey color shows 
collective electrons. 

The problem of the uniform (with wave-vector k = 0) surface collective oscillation in 
essentially long shaped objects (nanotubes) was discussed in [9]. It was shown that the 
frequency of such oscillation decreases with the increase in the length of a nanotube. This 
frequency is inversely proportional to the square root of the length of a nanotube [9].  
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2. ELECTROSTATIC FIELD AND OSCILLATION IN A CONDUCTIVE ELLIPSOID 

Let us consider electrically neutral bulk conductive ellipsoid with semi-axes a, b and 
c. The volume of the ellipsoid V = 4πabc/3, the total charge of the ions is enV (here e > 0 
is the value of the electron charge, n is the number of the collective electrons per unit 
volume of a sample). Electrostatic potential inside a uniformly charged ellipsoid (with 
total charge enV) can be found in [10]. For the ellipsoid of the ions of a considered sam-
ple we have: 
 ϕi(x,y,z) = enC − (2πen/ε)(Nax2 + Nby2 + Ncz2), (3) 

where C is some constant, Na, Nb, and Nc are the depolarization factors of the isotropic 
ellipsoid for the directions of the three axes [11].  

As Na + Nb + Nc = 1 [11], one can see that Eq. (3) satisfies the Poisson equation, 
∆ϕ = −4πen/ε.  

 
Fig. 2. Uniform dipole shift of the collective electrons as a whole relative to the lattice of the 

ions in the ellipsoid of a conductive material. Grey color shows collective electrons. 

Now let us model the charge of the ions by a uniformly charged ellipsoid with the 
charge of the opposite sign with respect to the collective electrons charge sign (jellium 
model).  

Let us calculate the electrostatic field in a sample when the ellipsoid of the collective 
electrons is shifted along the x-axis by small shift −h relative to the ellipsoid of the ions. 
The electrostatic potential produced by the shifted ellipsoid of the collective electrons (of 
the same charge of an opposite sign) according to Eq. (3) is  

 ϕe(x,y,z) = −enC + (2πen/ε)[Na(x + h)2 + Nby2 + Ncz2], (4) 

Total electrostatic potential is the sum of the potentials, produced by the ions and the 
collective electrons:  
 ϕ = ϕi + ϕe = (2πenNa/ε)h(h + 2x). (5) 

The electrostatic field inside an ellipsoidal sample is equal to minus gradient of ϕ. It 
has x component only:  
 Ei = −4πenNah/ε. (6) 

This field acts on each of the collective electrons with restoring force −eEi.  
Let us assume that the displacement of some current carrier is h = h0sinωat. Then the 

Newton equation for the current carrier, m∂2h/∂t2 = −eEi, and Eq. (6) yield:  
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 ωa = ωp0Na
1/2. (7) 

It is well known [11] that for the ellipsoidal sample Na < 1. Then, according to Eq. (7) 
the value of ωa is smaller than that of ωp0. Hence such oscillation could not penetrate into 
the bulk of a sample. Regarded oscillation exists in the surface layer only (Mie oscillation).  

When a = b = c = R (spherical sample), Na = Nb = Nc = 1/3 [11]. Eq. (7) accordingly 
yields √3 times smaller value of ωa than that of ωp0 (Mie frequency). When a is essen-
tially smaller than b and c, Na tends to 1 [11]. Eq. (7) in this case yields ωa ≈ ωp0, like in 
the case of a thin slab. For a essentially larger than b = c, Na tends to zero [11] along with 
the frequency ωa.  

In general Eq. (7) describes 3 principal frequencies of the oscillations along the axes 
of a sample, ωa, ωb, and ωc. The frequencies ωb, and ωc could be obtained from Eq. (7) by 
changing a for b and c. It is worthwhile to mention that as Na + Nb + Nc = 1 [11],  

 ωa
2 + ωb

2 + ωc
2 = ωp0

2. (8) 

For spherical sample the principal frequencies are all equal, ωa
2 = ωb

2 = ωc
2 = (1/3)ωp0

2.  

3. DISCUSSION 

Proposed approach allows calculating the frequencies of the Mie oscillations in a bulk 
sample of a shape of an arbitrary ellipsoid. It has been shown that the sum of the squares 
of the three principal Mie frequencies is equal to the square of the Langmuir frequency. 
The values of the principal Mie frequencies depend on the corresponding values of de-
polarization factors. It is well known that the depolarization factors Na, Nb, and Nc depend 
on the shape of a sample only and that they are expressed through certain elliptic inte-
grals [11]. These integrals can be calculated for the ellipsoids of revolution (prolate and 
oblate spheroids) [11]. The depolarization factors of an arbitrary ellipsoid cannot be pre-
sented by elementary functions [11]. In [12] some simple approach was proposed in the 
frame of which some simple relation could approximate the depolarization factors:  

 Na = b2c2/(a2b2 + a2c2 + b2c2). (9) 

Two other depolarization factors can be obtained from Eq. (9) by cycling a, b and c. As 
expected Na + Nb + Nc = 1.When a = b = c = R (spherical sample) Eq. (9) yields Na = Nb = 
Nc = N = 1/3. When the eccentricity ε is small Eq. (9) yields Na ≈ [1 − (2/3)ε2]/3. This 
result is not essentially different from the expansion of the exact one, which yields Na ≈ 
(1 − 0.4ε2)/3 [11]. When a is essentially smaller than b and c Eq. (9) yields Na = 1, like in 
the case of a thin slab. For a essentially larger than b = c Na ≈ b2/2a2, that is in this case 
the approximate value of Na is inversely proportional to the square of the length of a long 
axis, a.  
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UNIFORMNE PLAZMENE OSCILACIJE U ELIPSOIDU 
PROVODNOG MATERIJALA 

Youri Kornyushin 

Razmatra se uticaj oblika uzorka na tip uniformnih dipolnih kolektivnih elektronskih oscilacija. 
U uzorcima "bulk" oblika uniformne dipolne oscilacije ne mogu da postoje, vec samo u uzorcima 
oblka tanke ploče. Ove oscilacije ne mogu da penetriraju elipsoidalne uzorke provodnih materijala, 
tako da se javljaju samo u površinskom omotaču uzorka ("Mie" oscilacije). Frekvence "Mie" 
oscilacija su izračunate za uzorke oblika proizvoljnog elipsoida. 


