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Abstract. It is shown that restoring force acts on the electronic cloud of the outer
electrons of a neutral or charged impurity atom when it is shifted relative to the inner
charged core (or expanded). Because of this the dipole oscillations arise which
influence considerably the dispersion law of the plasma oscillations in bulk extrinsic
semiconductors. Assuming that only one transition of electron from the ground state to
the first excited state is essential, the dispersion law is calculated. It is shown that the
calculated dispersion law consists of two separate branches, one of them originates
from the regular plasma oscillations of the free electrons of a conductivity band, and
the other one stems from the local oscillations of the outer electrons bounded to the
impurity atoms.

1. INTRODUCTION

The mass of an impurity an atom in a crystal is different from that of the host atoms.
In case of impurity the atom is heavier than the host atom as it oscillates with lower
frequency. When this frequency is found outside the phonon spectrum of a crystal, the
oscillation is called a local oscillation [1]. In case of impurity the atom is lighter than the
host atom it oscillates with higher frequency, which could be found inside the phonon
spectrum of a crystal. This oscillation is called a quasilocal oscillation [1]. Local and
quasilocal oscillations of phonon modes in crystals, containing light and heavy impurity
atoms are well known and studied in details [1]. Local oscillations manifest themselves
also in plasmon modes of semiconductor superlattices. Bulk and surface local plasmon
modes of the semiconductor superlattices were studied in [2-4]. Let us consider here local
low frequency oscillations of the electronic cloud around donor or acceptor impurity
atoms in bulk not heavily doped semiconductors and their interaction with regular plasma
oscillation of the current carriers. The regular plasma oscillation of the current carriers is
accompanied by the oscillating electric field, which influences other oscillations in a
sample. This interaction changes significantly the dispersion law of the collective
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electron oscillations. The interaction of the local oscillation of the electronic cloud
around impurity atoms with the regular plasma one is the simplest example of the
interaction between different modes of oscillations.

2. HYDROGEN ATOM MODEL FOR DONOR IMPURITY ATOM

The donor impurity atom has usually one more outer electron than the host atom of a
semiconductor (e. g., the silicon atom). Therefore a positively charged core and one
electron could model it. When the impurity atom is ionized, the electron moves to the
conductivity band. When this extra electron is bound to the donor impurity atom, the
hydrogen atom in a dielectric media could model it. This approximation is reasonable
when the size of the electronic cloud is large enough, and it is so for semiconductors with
dielectric constant ε0 larger than 5 (quite typical value of ε0 is about 10). In this case the
size of the atom 2R comprises several lattice parameters. At the same time to consider the
approximation discussed reasonable one should assume that the screening (Debye for the
Boltzmann statistics or Thomas-Fermi for the degenerated current carriers) radius is
much larger than R. In this case the current carries do not influence significantly the
formation of a "hydrogen atom". In such a model wave function of the electron in the
ground state is [5]

ψ(r) = [exp(−r/2R)]/2(2π)1/2R3/2, (1)

where r is the radius-vector and R is related to either equilibrium or not to the size of the
electronic cloud.

The energy of the ground state is considerably smaller for the atom in a dielectric
media (ε0

2 times) and it is described by the following equation [5]:

E0 = −(me4/2ε0
2ћ2), (2)

where e is the electron (negative) charge, m is the effective electron mass and ћ is the
Planck constant divided by 2π.

The electrostatic field created by the electron cloud, whose electric charge density is

ρ(r) = eψ*(r)ψ(r) = (e/8πR3)exp(−r/R), (3)

can be calculated using Gauss's theorem. The corresponding electrostatic potential,

ϕ(r) = (e/ε0r) − (e/2ε0R)[(2R/r) + 1]exp(−r/R), (4)

in the vicinity of r = 0 has the following form:

ϕ(r) ≈ (e/2ε0R) − (e/12ε0R3)r2 + … . (5)

The kinetic energy of the electron is a quantum mechanically averaged value of its
operator,

T = −(ћ2/2m)∆, (6)

and it is described by the following relation:

〈T〉  = ћ2/8mR2. (7)
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So the total energy of the electronic cloud and the positively charged core placed in
the center of the electronic cloud is as follows:

E(R) = (ћ2/8mR2) − (e2/2ε0R). (8)

The electrostatic energy of the electronic cloud itself should not be taken into account
as it represents a so-called self-interaction. Energy, described by Eq. (8), has a minimum
at R = Re = ε0ћ2/2me2, as is well known [5]. The minimum value of the energy is given by
Eq. (2).

In order to see the nature of the restoring forces let us expand the energy E(R) (Eq. 8)
in a series around R = Re and x = 0 (x is the shift of the electronic cloud as a whole
relative to the positively charged core. Using Eqs. (5,8), one can see that this expansion
has the following form:

E(x,R − Re) = −(me4/2ε0
2ћ2) + (e2/2ε0α)x2 + (2m3e8/ε0

4ћ6)(R − Re)2 + … , (9)

where α is the polarizability of the hydrogen atom.
In classical mechanics the model of the movement of the electronic cloud as a whole

relative to the charged core does not yield the correct value of the polarizability [6,7]. It
yields α = 6Re

3 = 3ε0
3ћ6/4m3e6. This value represents that part of the polarizability, which

is coming from the bulk of the electronic cloud (from the core of it) [6]. As to the
experimentally observed polarizability, the tail of the electronic cloud gives the main
contribution to it, which is not described correctly by this classical model. The correct
quantum mechanical value is α = 9ε0

3ћ6/2m3e6 [5].
The first term in the left-hand part of Eq. (9) is the energy of the ground state. The

second term describes the oscillatory movement of the electronic cloud as a whole around
the positively charged core (the dipole oscillations) in terms of classical mechanics. The
third term describes in the same framework the so-called breathing mode, that is the
isotropic oscillations of the radius of the electronic cloud R around its equilibrium value,
or oscillations of the atomic size [6,7]. Being of a spherical symmetry, such motion is not
accompanied by the creation of a time-dependent dipole, quadrupole or any other
multipole moments and therefore cannot emit electromagnetic radiation.

3. INTERACTION OF BULK AND LOCAL PLASMA OSCILLATIONS

In quantum mechanics the breathing mode for the hydrogen atom does not exist. In
many electron atoms it could be realized as a collective motion of many electron system
[6]. In quantum mechanics the only energy levels of the electron in a hydrogen atom are

Eν = −(me4/2ε0
2ν2ћ2), ν = 1, 2, 3, … . (10)

The transitions between these levels cause the polarization of the impurity atom when
the external electric field is applied [5]. The alternative external electric field excites
regular plasma oscillation of the current carriers in a semiconductor. In a semiconductor
regular plasma oscillation of the current carriers is accompanied by the oscillation of the
electric field of the same frequency. This field acts on the impurity atoms along with the
external one. Thus regular plasma oscillation of the current carriers interacts with the
polarization of the impurity atoms. This interaction leads to a modification of the
dispersion law of the oscillation. Let us assume further that the frequency is not too high,



Y. KORNYUSHIN256

so that only one transition, the transition from the ground level to the first excited one,
should be taken into account, and that the other transitions could be neglected.

The dielectric permeability of a semiconductor sample as a function of the angular
frequency ω and the wave vector k is usually regarded to be as follows [8]:

ε(ω,k) = 1 − (ωpi/ω)2 + 4πχ, (11)

where ωpi
2 = (4πe2n/m) + a0k2 is the initial plasma frequency of the electronic gas of the

conductivity electrons of a density n without taking into account the specific
polarizability of the substance of a sample χ (without the contribution of the free
electrons of a conductivity band). When the oscillation frequency of the electrons is much
higher than the collision frequency then, as was shown in [9], the oscillations of the
electrons are essentially one-dimensional and adiabatic. In this case factor
a0 = 3(kBT/m)ε0 for the case of the Boltzmann statistics, but a0 = 1.2(EF/m)ε0 for a
degenerated electronic gas (kB is the Boltzmann constant, T is the absolute temperature,
and EF is the Fermi energy). When the oscillation frequency of the electrons is much
lower than the collision frequency then a0 = (kBT/m)ε0 for the case of the Boltzmann
statistics, but a0 = (2EF/3m)ε0 for a degenerated electronic gas [9].

Taking into account that 1 + 4πχ = ε0, and that the polarizability of the bound
electrons of the donor impurity atoms which are not ionized [8],

αi = fnd e2/m(ω0
2 − ω2) (12)

(f is so called oscillatory force, nd is the number of the neutral, not ionized, donor atoms
per unit volume of a semiconductor, and ω0 = 3me4/8ε0

2ћ3 is the frequency of the
transition from the ground state to the first excited state, due to which the polarizability
arises), one can come to the following expression for the dielectric permeability as a
function of the angular frequency and the wave vector:

ε(ω,k) = ε0{1 − (ωp/ω)2 + [b/(ω0
2 − ω2)]}, (13)

where ωp
2 = (4πe2n/ε0m) + ak2 is the regular plasma frequency of the free conductivity

electrons in a semiconductor, a = a0/ε0, b = 4πfnde2/m, and ε0 is the low frequency limit of
the dielectric constant.

As was mentioned above, in Eq. (13) only one transition from the ground state to the
first excited state was taken into account.

The dispersion law, that is the dependence of the angular frequency on the wave
vector is determined in quantum mechanics by a well known condition ε(ω,k) = 0 [8].
From this and Eq. (13) follows that there are two branches of the oscillations:

ω1,2
2 = 0.5(ωp0

2 + ω0
2 + b + ak2) ±

0.5[(ωp0
2 − ω0

2 + ak2)2 + b(2ωp0
2 + 2ω0

2 + b + 2ak2)]1/2. (14)

At b = 0 one has ω1 = ωp = [(4πe2n/ε0m) + ak2]1/2 and ω2 = ω0. This means that at a
low concentration of neutral donor impurity atoms one has two separate modes of the
oscillations considered: a regular plasma oscillation of the free electrons in a conductivity
band and a local plasma oscillation of the outer electrons bounded to the donor impurity
atoms. When b = 0 and ω0 is larger than ωp0 the two branches of the oscillations cross at
some k. But when b is not zero, one can see from Eq. (14) that the two branches never
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cross. One of them goes below the other. This means that at higher concentrations the
dispersion law changes considerably. Typical dispersion curves are shown in Fig. 1. They
were calculated using Eq. (14) for ω0 = 1.1ωp0 and b = 0.1ωp0.

Fig. 1. Two branches of a typical dispersion curve, calculated using Eq. (14) for
ω0 = 1.1ωp0 and b = 0.1ωp0.

At high enough concentrations the impurity levels of the oscillation form the so-called
impurity band [1]. When there are no free electrons in the conductivity band and there are
no regular plasma oscillations, Eq. (14) yields that the local mode only is present.

4. CONCLUSION

As one can see from the results in Section 3, the interaction between a regular bulk
mode of the plasma oscillation and local plasma oscillation around donor impurity atoms
leads to the creation of low frequency branch of plasma oscillations.

The acceptor impurity atom may have also one or two outer electrons, which
contribute to the formation of a local mode of the plasma oscillations in the same manner
as was considered above. Only the factors in equations have their specific values.

So, it is worthwhile to mention that the dipole oscillations of the electronic cloud of
the impurity atoms in bulk semiconductors interact with the regular plasma oscillations of
conductivity electrons. This leads to a significant modification of the dispersion law of
the plasma oscillations. It was shown that as a result of this interaction two branches of
the plasma oscillations appear in the bulk extrinsic semiconductor.
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UVOD U NISKOFREKVENTNE LOKALNE PLAZMONE
UNUTAR PRIMESNIH POLUPROVODNIKA

Yuri Kornyushin

Pokazano je da povratna sila deluje na elektronski oblak spoljašnjih elektrona neutralnog ili
naelektrisanog atoma nečistoća, kada je on pomeren u odnosu na unutrašnji naelektrisani ostatak.
Dipolne oscilacije koje proizilaze utiču značajno na zakon disperzije u poluprovodnicima.
Pretpostavljajući de jedino jedan prelaz elektrona iz osnovnog u prvo pobuđeno stanje je značajan,
izračunat je zakon disperzije. Takođe je pokazano da zakon disperzije sadrži dve grane, jedna od
njih potiče od regularnih oscilacija, a druga potiče od lokalnih oscilacija spoljašnjih elektrona
vezanih za atome nečistoća.


