
UNIVERSITY OF NIŠ
The scientific journal FACTA UNIVERSITATIS

Series: Philosophy and Sociology Vol.2, No 7, 2000 pp. 357 - 365
Editor of series: Gligorije Zaječaranović

Address: Univerzitetski trg 2, 18000 Niš, YU
Tel: +381 18 547-095, Fax: +381 18 547-950

THE LISD APPROACH

UDC 37.022+510.62

Djordje Kadijević

Mathematical Institute, Serbian Academy of Sciences and Arts,
Kneza Mihaila 35, 11001 Belgrade, p.p. 367, Yugoslavia

E-mail: djkadij@mi.sanu.ac.yu; URL: http://www.mi.sanu.ac.yu/~djkadij

Abstract. This study presents a didactic approach to learning mathematics through
knowledge engineering. This approach is realized through the development of expert
system knowledge bases. The development is based upon rapid prototyping that is
utilized through programming in logic and PROLOG.

Although a number of constructivist educators have suggested knowledge engineering
and the use of expert system shells as cognitive tools (see, for example, Jonassen, 1996), a
corresponding didactic approach has not been developed. In order to remedy this gap, my
PhD study developed such an approach called LISD. This paper presents LISD design, its
prerequisites and their didactic sequencing, LISD application, and difficulties that may
follow it. For order LISD issues, see Kadijevich (1999).

DESIGN

The LISD approach is based upon two able methodologies for mathematical problem
solving and software development: the heuristic approach of Pólya and Schoenfeld, and
rapid protopying via programming in logic and PROLOG∗ . As LISD uses a framework for
developing logic programs (Galle & Kovács, 1992), it comprises six phases:
identification, conceptualization, formalization, implementation, verification and
elaboration.
− Identification. Selecting an area and its problems. Solving the selected problems by

 Received March 23, 1999
∗ http://www.mi.sanu.ac.yu/~djkadij/methods.htm

DJ. KADIJEVIĆ358

using the heuristic approach of Pólya and Schoenfeld. Realizing the relevant
knowledge regarding the solved problems that will be the subject of intelligent
computer tutoring.

− Conceptualization. Expressing the relevant knowledge by means of suitable objects,
their properties and relations among them.

− Formalization. Writing a program in logic expressing the selected objects, properties
and relations.

− Implementation. Transforming the program in logic into a PROLOG program (an if-
then knowledge base), by taking into account its declarative features. A text-editor is
used.

− Verification. Testing the correctness of the PROLOG knowledge base by taking into
account its procedural behaviour. Improving the knowledge base according to the test
outcomes (if need be). An expert system shell is used. #1

− Elaboration. Improving the knowledge base in respect of its optimization, solving a
wider class of related problems, etc.

Since rapid prototyping is applied, these phases do not follow each other in the given
order, but they repeat and overlap several times, according to the number of the
developed prototypes #2. Note that Schoenfeld’s control of problem solving based upon
various metacognitive questions — e.g., "What are you doing", "Why are you doing
that?", and "How will this help you to solve the task?" — should be utilized in all phases
through pair work where one student acts as the solver, whereas the other acts as the
solver’s external monitor (the students should exchange their roles regularly).

PREREQUISITES AND THEIR DIDACTIC SEQUENCING

An effective LISD utilization is based upon an effective realization each of the
following topics:

1. the heuristic approach of Pólya,
2. Schoenfeld's control of problem solving,
3. expert systems,
4. knowledge representation by an if-then formalism through programming in logic

and PROLOG.

Our experience suggests that efficient LISD teaching/learning can be achieved by
utilizing the following didactic steps:

1. Introduce the heuristic approach of Pólya within 3-4 hours. Present a number of
examples regarding the use of specialization, generalization and analogy, and
explain several ways of solving some of the considered problems.

2. Familiarize students with Schoenfeld's control of problem solving within 2-3
hours. Encourage them to play patiently their roles of the solver and the external
monitor.

3. Introduce the features, architecture and usage of expert systems within 2 hours.
Encourage students to consult an expert system regarding a suitable mathematical
topic.

The LISD Approach 359

4. Analyze the knowledge base of the consulted expert system whose shell supports
an if-then formalism for representing knowledge. Encourage students to: (a) apply
this formalism to simple knowledge items, (b) develop facts and rules
(programming in logic), (c) create simple knowledge bases (programming in
PROLOG) by using a text-editor, and (d) consult (test) these bases by using an
expert-system shell supporting the utilized formalism. (3-4 hours)

5. Require students to develop small-scale knowledge bases for chosen problems
according to the LISD design. Encourage them to use hierarchical rules.
(Recursive rules should be avoided, at least in the beginning.)

It is important to underline that the LISD students do create knowledge bases through
programming in PROLOG, but this programming need not be made explicit nor be widely
applied. This is because the LISD utilization only requires knowledge regarding the shell
formalism and the way it unifies terms and fires rules. This knowledge, which should be
explained to the students when they encounter an inadequate procedural behaviour of the
developed knowledge bases, is likely to cause only minor learning difficulties
(Kadijevich, 1998).

APPLICATION

In order to illustrate LISD application, let us examine a way of creating two simple
prototypes regarding one object uniform motion, keeping in mind that the developed rules
do not solve problems but express strategies whereby some classes of problems on motion
can be solved. The emphasis is thus on developing and using algorithms to solve
problems, which requires students "to give qualitative explanations of principles and
make direct inferences from them without referring to the results of numerical
calculations" (Lippert, 1990; p. 29). Note that although some expert systems allow
numerical data input, expert systems in general usually do not perform numerical
computation.

prototype #1

− Identification. Some examples are ... They can be solved by ... Thus, in simple
problems on one object uniform motion we deal with three variables - speed, travelled
distance and travelling time - one of which is to be determinated by means of the
others.

− Conceptualization. In all such tasks we have one objects (car, cyclist, pedestrian, etc.),
which has three properties (speed, travelled distance and trevelling time) connected
with a relation s = d / t.

− Formalization. If an object and its speed and travelling time are known, a
corresponding program in logic may have the following form:

answer(object_travelled_distance = object_speed *

 object_travelling_time) if

known object and

known object_speed and

known object_travelling_time.

DJ. KADIJEVIĆ360

Similar programs can easily be written if an object and its speed and travelled distance are
known, or if an object and its travelled distance and travelling time are known.

− Implementation. Having in mind the chosen formalism for representing knowledge,
our knowledge base may take the form (lines with comments begin with %):

% -------------------- rules --------------------

1 rule

if object(X) and

 speed(X) and

 travelling_time(X)

then answer(travelled_distance(X) = speed(X) *

 travelling_time(X)).

% X stands for any objects (car, bicycle, train, etc.);

% speed(X) denotes that the speed of a specified object X

% is known

2 rule

if object(X) and

 speed(X) and

 travelled_distance(X)

then answer(travelling_time(X) = travelled_distance(X)

 / speed(X)).

3 rule
if object(X) and

 travelled_distance(X) and

 travelling_time(X)

then answer(speed(X) = travelled_distance(X) /

 travelling_time(X)).

% -------------------- facts --------------------

% how many objects are treated by the system

objects(1).

% which data may be asked by the system

askable(speed(X)).

askable(travelling_time(X)).

askable(travelled_distance(X)).

% explanations regarding the conceptualization/activation

% of the developed rules

help(1, [$... some text regarding rule 1 ...$]).

help(2, [$... some text regarding rule 2 ...$]).

help(3, [$... some text regarding rule 3 ...$]).

− Verification. It is easy to check that the listed program has a correct procedural

The LISD Approach 361

behaviour. If the student's logic program is correct, an incorrect procedural behaviour
of its PROLOG program is usually caused by: (a) some typographical errors, (b) the
use of some functors that are unrecognizable by the shell (use "askable" and "help" in
the introduced format), (c) creating a rule containing askable(X) instead of X only,
and (d) some syntax errors in respect of the shell's notation of facts and rules. These
errors can be, in most cases, easily located and corrected.

− Elaboration. Extend the system's possibilities having in mind that an object's time
coordinate is frequently given by two of the following variables: travelling time,
starting time and finishing time.

prototype #2

− Identification. Some examples are ... They can be solved by ... Thus, as regards an
object's time coordinate, we deal with three variables - travelling time, starting time
and finishing time - one of which is to be determinated by means of the others.

− Conceptualization. An object's new properties are travelling time, starting time and
finishing time, which are connected with a relation t = tf - ts.

− Formalization. If an object and its starting time and finishing time are known, a
corresponding program in logic may have the following form:

answer(object_travelling_time = object_finishing_time -

 object_starting_time) if

known object and

known object_finishing_time and

known object_starting_time.

Similar programs can easily be written if an object and its starting time and travelling
time are known, or if an object and its travelling time and finishing time are known.

− Implementation. Prototype #2 can be realized by adding to prototype #1 the
following rules and facts:

% -------------------- rules --------------------

% ... rules of prototype #1

4 rule

if object(X) and

 starting_time(X) and

 travel_duration(X) equals T and

 T \== (finishing_time(X) - starting_time(X))

 % the last condition prevents the occurance

 % of the answer:

 % finishing_time(X) = starting_time(X) +

 % (finishing_time(X) - starting_time(X)).

then answer(finishing_time(X) = starting_time(X) + T).

5 rule

if object(X) and

 finishing_time(X) and

DJ. KADIJEVIĆ362

 travel_duration(X) equals T and

 T \== (finishing_time(X) - starting_time(X))

 % the last condition prevents the occurance

 % of the answer:

 % starting_time(X) = finishing_time(X) -

 % (finishing_time(X) - starting_time(X)).

then answer(starting_time(X) = finishing_time(X) - T).

6 rule

if object(X) and

 travelling_time(X)

then travel_duration(X) equals travelling_time(X).

7 rule

if object(X) and

 starting_time(X) and

 finishing_time(X)

then travel_duration(X) equals (finishing_time(X) -

 starting_time(X)).

8 rule

if object(X) and

 speed(X) and

 travelled_distance(X)

then travel_duration(X) equals travelled_distance(X) /

 speed(X).

% -------------------- facts --------------------

% ... facts of prototype #1

askable(starting_time(X)).

askable(finishing_time(X)).

help(4, [$... some text regarding rule 4 ...$]).

help(5, [$... some text regarding rule 5 ...$]).

help(6, [$... some text regarding rule 6 ...$]).

help(7, [$... some text regarding rule 7 ...$]).

help(8, [$... some text regarding rule 8 ...$]).

Having in mind that travelling time can be given in two ways, rules 1 and 3 of
prototype #1 are to be modified. To achieve this end, the following code can be used:

1 rule

if object(X) and

 speed(X) and

 travel_duration(X) equals T

then answer(travelled_distance(X) = speed(X) * T).

The LISD Approach 363

3 rule

if object(X) and

 travelled_distance(X) and

 travel_duration(X) equals T

then answer(speed(X) = travelled_distance(X) / T).

− Verification. An interpretation of the developed knowledge base is not possible until
we tell PROLOG system that "equals" is an user-defined operator. As "equals"
corresponds to the built-in operator "=", it is natural to use the following definition:

:- op(700, xfx, equals).

(This user defined operator is not needed if we use "=" in a way that prevents
unification, such as: solve(travel_duration(X) = T). Of course, instead of "solve", we can
use another functor.) Even after this definition has been made, a correct interpretation of
the knowledge bases is still not possible. This is because the shell, or PROLOG
interpretator to be more precise, considers the developed rules in respect of their order (a
rule's number is irrelevant from a point of its utilization). The rules therefore are to be
rewritten. The following way is required: 4, 5, 1, 2, 3, 7, 8 and 6. As regards rules order in
general, a rule of thumb is: in a set of related rules, more specific rules precede others; in
a whole knowledge base, main rule precede subordinate rules.
− Elaboration. Extend prototype #2 in order to handle one object uniform motion in

respect of a reference point.

DIFFICULTIES

The considered prototypes clearly illustrate two groups of difficulties relevant to the
phases of implementation and verification. The first group is caused by: (a) neglecting the
shell's formalism - the chosen syntax for writing facts and rules, and (b) writing facts and
rules carelessly. The second one is generated by an unsuitable order of the developed
rules causing incorrect problem solving activities. Although both groups of difficulties
may discourage students from experimenting with knowledge engineering, they still can
be eliminated to a great extent with some teacher's help, especially when we use a shell
that can display the way in which the rules are fired.

Various difficulties can also occur in other phases as they require students to:
(a) generate and solve problems, (b) externalize, formalize and represent ways of solving
these problems, and (c) optimize the content of the developed knowledge bases. Although
they all can be carefully treated, our experience suggests that special attention should be
given to writing rules using other rules. Of course, an introductory LISD utilization
should not require the creation of recursive rules and optimizations based upon the
compression of a number of rules into a few rules, because these requirements call for
advanced cognitive and metacognitive activities.

Undoubtedly, an effective LISD utilization requires versatile cognitive and
metacognitive activities. It therefore seems that the LISD approach is only suitable for
those students whose intellectual and mathematical abilities are above average#3.
Although the impact of the student's personal variables on his/her LISD outcome has not
been studied so far, it is quite clear that only a few students, perhaps even in an able class,

DJ. KADIJEVIĆ364

can successfully act as knowledge engineers. What about other students? They can
consult the developed knowledge bases in order to comprehend the ways whereby some
related problems are solved by able students of the same age. This kind of monitoring
may be valuable to many students, especially to those who can successfully do
mathematics when some help is provided by the teacher. Although some empirical
evidence regarding this issue is still needed, it was found that social interactions between
students who were spontaneous experts and students who were novices were profitable for
both kinds of student in respect of their learning outcomes (Marro Clement et al, 1998).

NOTES

#1 The shell supporting an if-then formalism for representing knowledge should allow the use of
the following commands: solve (solve the problem), how (show how the problem has been
solved), why (show the underlying rule), help (show the procedural and/or conceptual
background of the underlying rule), tron (show the way in which the rules are fired), troff (turn
the tracing facility off), and list (list the content of the working storage - a temporary
knowledge base created from the user's answers).

#2 These phases need not be introduced to the LISD students. If they have been introduced, the
students should be given some freedom to utilize them as conceptualization, formalization and
implementation may be utilized in parallel as a single phase.

#3 It is true that almost any method (including traditional lecturing) would work for able students,
but LISD contrary to most methods does provide less able students with an intelligent assistant,
which explains to them the strategies of solving problems within a particular area that have
been realized by their able classmates.

REFERENCES

 1. Galle, P. & Kovács, L. B. (1992). The logic of worms: a study in architectural knowledge representation.
Environment and Planning B: Planning and Design, 19, 5-31.

 2. Jonassen, D. H. (1996). Computers in the classroom: Mindtools for critical thinking. Englewood Cliffs,
NJ: Prentice-Hall.

 3. Kadijevich, Dj. (1998). Can Mathematics Students Be Successful Knowledge Engineers? Journal of
Interactive Learning Research, 9, 235-248.

 4. Kadijevich, j. (1999). An approach to learning mathematics through knowledge engineering. Journal of
Computer Assisted Learning, 15, 4, 291-301.

 5. Lippert, R. (1990). Teaching Problem Solving in Mathematics and Science with Expert Systems. Journal
of Artificial Intelligence in Education, 1(3), 27-40.

 6. Marro Clement, P., Perret-Clermont, A.-N., Grossen, M. & Trognon, A. (1998). Le partenaire comme
enseignant ou comme interlocuteur: une analyse expérimentale et interlocutoire. Cahiers de Psychologie,
no 34. Séminaire de Psychologie, Neuchâtel.

The LISD Approach 365

UČENJE MATEMATIKE PUTEM REŠAVANJA PROBLEMA
KROZ PROJEKTOVANJE

INTELIGENTNIH TUTORSKIH PROGRAMA

Djordje Kadijević

Imajući u vidu osobenosti Poljinog i Šenfeldovog načina rešavanja problema, pedagoške
vrednosti inteligentnih tutorskih programa i način projektovanja ovih programa brzim
prototipovanjem kroz programiranje u logici i PROLOG jeziku, rešavanje problema, koje je u
skladu sa Poljinim i Šenfeldovim pristupom, moglo bi biti realizovano kroz projektovanje
inteligentnih tutorskih programa u kome učestvuju učenici i njihovi nastavnici. Ovakav način
realizacije problemske nastave matematike može se bazirati na metodičkom pristupu koga
razmatramo u ovom poglavlju.

