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Abstract. In this paper an appearance of chatter vibrations in metal cutting is 
investigated. The model of the system is based on the predictive machine theory of 
shear zone model. Since the dynamic cutting force is strongly influenced by the 
variations of cutting parameters, the objective of present paper is to consider the 
variations of rake angle and shear angle during feeding rate change, and to propose 
modified nonlinear model of cutting force and, consequently, nonlinear analytical 
model of chatter. By analysing the analytical solution of the governing equation three 
kinds of oscillatory motion are found. For each of them the variations of cutting force 
component (thrust force) and rake angle as a function of time are obtained 
numerically. 
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1. INTRODUCTION 

Chatter vibrations belong to the class of self-excited vibrations, whose occurrence in 
metal cutting has a bad influence on surface finish and dimensional accuracy of the work-
piece, tool life and even machine life. A significant number of investigations have been 
done on various mechanisms and characteristics of chatter. The cutting process with 
variable feed is one of the principles of arising of chatter vibrations. That results in the 
variable dynamic cutting force. The approach to this problem can be experimental and 
theoretical. The former is often used for supporting the latter, and for getting instructions 
for improvements of work. Theoretical models are usually derived from a shear zone 
model of chip formation [1,2] assuming steady-state cutting data. However, this feature is 
contradictory to the experimental and theoretical investigations [3-6], which showed that 
during oscillatory cutting some parameters are changing and, consequently, the cutting 
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force, too. Tobias and Fishwick [7] found the first analytical expression of the dynamic 
cutting force variation as a function of an incremental variation of the chip-thickness and 
feed velocity. Kainth [3] evolved a theory of steady-state orthogonal cutting by including 
the influence of both chip-thickness and the rake angle. Nigm et al. considered the 
variations in the cutting parameters: feed, rake angle and cutting speed on the basis of 
dimensional analysis [5,6]. Lin and Weng [8] envisaged the cutting force affected by the 
variation of shear angle. By the reason of fundamental properties of the process nonlinear 
analytical models are needed [9]. Two aspects of the non-linearity of the cutting force are 
studied. One of them is to consider the nonlinear cutting force due to higher order chip 
thickness variations [8,10-13], which ensures the experimentally proved finite amplitude 
of chatter. The other is to consider the multiple regenerative effects [14,15]. 

In spite of extensive theoretical investigations the complete analytical model of chatter 
has not been formed yet, by the reason of complex cutting phenomena. Therefore, 
fundamental studies of the mechanics of oscillatory cutting are extremely important.  

In this paper the model based on ideal shear concept is modified by considering the 
angular oscillations in that plane in response to the variations of cutting parameters: feed, 
rake angle and shear angle. The nonlinear behavior is also included in the model. 

2. MODELING OF THE THRUST FORCE 

Let us discuss the orthogonal wave cutting process with a shear zone model of chip 
formation. For the simplicity of presentation, the system with a single degree of freedom 
(x-coordinate) is represented (Fig. 1.). Merchant [1] derived the relation for the cutting 
force component (thrust force) Fx as a function of cutting conditions, tool angles and the 
frictional condition between the tool and work-piece, i.e.: 

 
)cos(sin

)sin(
α−β+ϕϕ

α−β
τ= wsFx  , (1) 

where:  s − feed, w − cutting width, τ − shear stress, β − friction angle, α − rake angle, 
ϕ − shear angle.  
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Fig. 1. Scheme of the orthogonal cutting process with continuous chip formation. 
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During oscillatory cutting process variations of the feed, rake angle and shear angle 
with respect to their steady-state values are expected. Let us denote these steady-state 
values with the subscripts 0. Thus, according to Fig.1, the instantaneous value of the feed 
is varied by small increment, which depends on the relative motion of the tool in x-
direction, and takes the form: 

 xss −= 0 . (2) 

Fig. 2. shows the variations of the rake angle α. It is easy to see that the change of this 
parameter is equivalent to the small angle ξ, which can be expressed as a function of the 
cutting speed v and the velocity of the tool vibration x& : 
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Fig. 2. Changing of the rake angle during the oscillatory cutting process. 

Using the third order nonlinear form of angle ξ, the instantaneous value of the rake angle 
is obtained: 
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For the case of wave cutting, such a change of the rake angle will result in the same 
change of the shear angle [6]. For our system this change is denoted by ξ, and we get the 
relation for the instantaneous value of the shear angle: 
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(5) 

The shear stress τ is slightly dependent on the cutting speed [5] and can be assumed as a 
constant value. The instantaneous value of the thrust force Fx is obtained by using the 
third-order Taylor's expansion in the neighborhood of steady-state values (s0,α0,ϕ0) with 
respect to the incremental geometric variations. These variations are defined by the 
differences between the instantaneous values of the parameters: feed, rake angle and shear 
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angle and steady-state ones. So, 

 

,
32

)(

2632
)(

3
11

2

1
11

11

3
111111

2
111

1110







+

−













 +

+
−++















 +

−
+

−
+

+





++

++−−=

v
xxIH

v
xxTRP

v
xxIH

v
xSQMLCB

v
xJGE

v
xCBxAFF xx

&&&

&&&

 (6) 

where coefficients of this expression are given in the Appendix. 

3. MODELING OF THE TOOL VIBRATIONS 

The equation of the motion of the tool can be written as: 

 0xx FFcxxkxm −=++ &&& , (7) 

where: m − equivalent mass of the system, 22 / dtxdx ≡ , t − time  
k − equivalent damping of the system, dtdxx /≡& , c−equivalent stiffness of the system 
Fx is given by equation (6), and Fx0 is the steady-state value of the thrust force. 

3.1. Motions of the tool 
In accordance to the paper [16] the solution in the first approximation for nonlinear 

ordinary differential equation (7), is: 

 ψ= cosax , (8) 
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where: a − the amplitude of vibrations, a(0) − the initial amplitude  
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ψ − the phase of vibrations, ψ(0) − the initial phase, 
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By analysing this solution the existence of three cases of motion can be identified. 
When the term, formed by damping coefficients of the equation of motion (7), is equal to 
zero, free oscillations of tool occur. This condition implies, so-called, the critical value of 
the cutting speed: 
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For this value of the cutting speed we have the threshold of chatter. From the equation (9) 
it can be concluded that the amplitude of this motion aI tends to its initial value: 

 )0(aaI → . (12) 

Second case is obtained for the cutting with the cutting speed vII , which is higher than 
the critical value, i.e. for: 

 cII vv > ,
 

(13) 

the damped oscillatory motion occurs. The amplitude of the motion disappears: 

 0→IIa .  (14) 

Finally, for the cutting system with the cutting speed vIII , which is smaller than the 
critical one: 

 cIII vv < , (15) 

self-excited vibrations occur. The amplitude of this case aIII reaches the steady-state 
amplitude of this case asIII : 
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Depending on the initial amplitude, there are two possibilities for system's behavior. 
When the initial amplitude a(0) is smaller than the steady-state value asIII , the amplitude 
firstly increases and then becomes the constant value. When the initial amplitude is higher 
than the steady-state one, the amplitude firstly decreases and then reaches the same 
constant value asIII .  

By applying the third-order Runge-Kutta numerical procedure to the equation (6) the 
existence of all analytically obtained cases of motion is proved. Results of this procedure 
in Fig. 3. are shown. In this paper dynamic behavior is investigated under the test 
conditions listed in the Table 1. 
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Fig. 3. Oscillatory motion of the tool:  

a) free oscillations;  
b) damped oscillations;  
c) self-excited vibrations when a(0) < asIII ;  
d) self-excited vibrations when a(0) > asIII . 

Table 1. Test conditions 

equivalent mass of the system m = 15 kg 
equivalent damping of the system k = 400kg s-1 
equivalent stiffness of the system c = 3 106 Nm-2 
feed (steady-state value) s0 = 0.17 mm 
cutting width w = 2.5 mm 

shear stress τ = 655 106 Nm-2 
friction angle β = 70o 
rake angle (steady-state value) α0 = 10o 
shear angle (steady-state value) ϕ0 = 10o 
 

CASE I a(0) = 0.0085 mm 
CASE II a(0) = 0.0085 mm 
CASE III a(0) < aSIII 
  a(0) < aSIII 

a(0) = 0.0085 mm 
a(0) = 0.034 mm 

3.2. Variations of the thrust force Fx 
Of special interest is to analyse the variations of the thrust force Fx during the time for 

aforementioned cases. Namely, the dynamic cutting force excites the machine tool 
structure to generate the tool vibrations and as a consequence of these vibrations, the 
dynamic cutting force is in turn affected. In other words, the tool vibrations and dynamic 
cutting force form a well-known closed-loop system [12,17]. 

For this investigation the third-order Runge-Kutta numerical algorithm is used. Results 
of this procedure applied to the equations (7), (6) are plotted in Fig. 4.  
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Fig. 4. Thrust force-time diagram:  

a) for the case of free oscillations;  
b) for the case of damped oscillations;  
c) for the case of self-excited vibrations when a(0) < asIII ;  
d) for the case of self-excited vibrations when a(0) > asIII . 

The effect and consequence of free vibrations of the tool is the thrust force, which 
varies harmonically with the constant value of the amplitude. So, according to the 
analytical solution (8), (12) and the equation (6) we have: 
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(17)  

where Iψ&  is determined by equations (10)-(12). 

The case of damped oscillations, when the amplitude aII vanishes is obtained 
gratefully to the thrust force FxII , which as t → ∞, reaches the same value as the static 
elastic force Fx0 , i.e.: 
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From the Fig. 4. and the Fig. 3. it is also seen that the self-excited variation of the thrust 
force causes the same kind of tool's motion. As t → ∞, the thrust force FxIII tends to 
constant value, which is not equal to the steady-state value Fx0 : 
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where IIIψ&  is obtained on the basis of equations (10), (15), (16). 
The linearized model for the thrust force has been included in the model of chatter for 

many researches. However, disadvantage of this consideration is that the linearized model 
does not correspond to the real one. Namely, the results of the linearized model show that 
the thrust force increases unlimited. This conclusion is affirmed in the Fig. 5., by 
comparing the results for linearized and nonlinear model of the thrust force for the 
condition given by equation (15), and a(0) < asIII . 
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Fig. 5. Comparison of the values of thrust force:  

linearized model (dotted line), nonlinear model (solid line). 
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3.3. Variations of the rake angle 
When the dynamic cutting is investigated, variations of the shear angle are usually 

taken into consideration. But the change of the rake angle is very often neglected, and this 
angle is assumed as constant value α0. Let us test accuracy of this statement. The 
investigation will be made by substituting numerically obtained solutions of the equation 
(7) into the equation (4). On the basis of comparison of the instantaneous values of the 
rake angle with the steady-sate one α0, the relative error is plotted in the Fig. 6. For the 
case of free oscillatory motion of the tool, the rake angle αI is changing between a 
minimum value αImin and maximum value αImax . For our test conditions when α0 = 100, 
the domain of the variation of the rake angle is defined by αImin ≈ 4.280 and αImax ≈ 15.710. 
These values indicate that the relative error is about 50%. For the case of damped 
vibrations of the tool, the value of rake angle αII tends to the value α0. However, at the 
beginning of the oscillatory cutting process the difference is about 2%. If the self-excited 
vibrations in the system occur, the rake angle αIII has the domain, which is determined 
with minimum αIIImin and maximum αIIImax . When a(0) < asIII , αIIImin ≈ -16.30 and αIIImax ≈ 
36.650; while, when a(0) > asIII , αIIImin ≈ -25.850 and αIIImax ≈ 48.490.  
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Fig. 6. Relative error of values of the rake angle as a function of the time:  

a) for the case of free oscillations;  
b) for the case of damped oscillations;  
c) for the case of self-excited vibrations when a(0) < asIII ; 
d) for the case of self-excited vibrations when a(0) > asIII . 

It is seen that for this case the difference is significant and can not be neglected. 
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4. CONCLUSIONS 

It can be concluded: 
− the motion of the tool is crucially affected by the cutting parameters. Depending on 

the value of the cutting speed with respect to its critical value given by equation 
(11) three cases can appear: 

• for the cutting process with the critical cutting speed (threshold of chatter) the 
tool oscillates with the constant amplitude. 

• when the cutting speed is higher than the critical one, the oscillatory motion of 
the tool disappears and only for this condition the steady-state cutting theory 
holds. 

• when the cutting speed is smaller than the critical value, the self-excited 
vibration occurs. 

All these conclusions are completely in accordance to the previous experimental and 
theoretical observations, which state that chatter amplitude does not increase indefinitely 
but stabilizes at the finite value. 

− by this non-linear model of chatter and non-linear model of thrust force, in which 
variations of the feed, rake angle and shear angle are included, representation of 
the oscillatory cutting system as a feedback loop is proved. 

− there is a significant influence of occurrence of chatter on the variation of the rake 
angle for the case of free and self-excited vibrations and because of that its 
incremental change has to be included in the further investigations. 
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The coefficients of the equation (6) are: 
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SAMOPOBUDNE OSCILACIJE U PROCESU REZANJA METALA 
- TEORIJSKI  PRILAZ  

Ivana Kovačić 

Ovaj rad se bavi proučavanjem pojave samopobudnih oscilacija u procesu rezanja metala. 
Model sistema je baziran na teorijskom pristupu deformisanja metala u zoni smicanja. Kako je 
dinamička sila zavisna od vrednosti parametara rezanja, u ovom radu se razmatra uticaj  koji na 
nju ima promena grudnog ugla i ugla smicanja tokom promene dubine rezanja, i formira  
modifikovani nelinearni model sile rezanja a, posledično, i nelinearni analitički model 
samopobudnih oscilacija. Analizom analitičkog rešenja utvrđeno je postojanje tri moguća slučaja 
oscilatornog kretanja alata. Za svaki od njih je numeričkim putem određena promena 
kompomnente sile rezanja (sile prodiranja) i grudnog ugla tokom vremena. 


