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Abstract. A new approach to investigate the local topology of the involute gear tooth 
surface has been developed. The approach is based on the fundamental results in 
differential geometry of surfaces. The method described here may always be applied, 
but is less efficient than other methods if calculation of only one single parameter is 
required. However, when multiple parameters of the local geometry (intrinsic or 
external) of the gear tooth surface must be calculated, this method is more efficient 
than other methods in use. 
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1. INTRODUCTION 
Design and manufacture of gears requires frequent calculation of the parameters of the 

working surface of a gear tooth. In cases when it is necessary to calculate many 
parameters of that surface, application of the first and second fundamental forms of the 
surface (the Gaussian fundamental forms of the surface) is efficient. Application of the 
first Φ1.G  and the second Φ2.G fundamental forms of the working surface G of a gear tooth 
allows simplifying the formulas necessary for calculations and is convenient for detailed 
study of the geometry of surface G.  
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2. LOCAL TOPOLOGY OF THE GEAR TOOTH SURFACE  
Let us start from the determination of surface G. 
As is well known [2, p.5.3], a kinematic method of creating an involute curve is to use 

a circular disk of radius rb with a string wrapped around it. Unwinding the that string 
produces a series of lines tangent to this base circle rb (i.e. to the circular disk), and 
tracing the ends of these tangent lines generates an involute curve (Fig. 1). In a similar 
manner, the screw involute surface G may be generated by screw motion of a straight line 
that maintains its direction tangent to the helix on the base cylinder during this motion. 
Fig. 1 shows the screw involute surface G that is covered with straight lines (straight 
generatrix) - tangent to the helix on the base cylinder [2, p.1.11; 4; 5; 6]. 

 
Fig. 1. Generation of an involute curve. 
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As with the involute curve (Fig. 1), the position vector of an arbitrary point on the 
involute surface G in coordinate system XZY can be written as (Fig. 2): 

 CBArG

rrrr
++= .  (1) 

 
Fig. 2. Generation of surface G. 

In (1), vectors A
r

, B
r

 and C
r

, respectively, are equal to (Fig.2): 

 ;sincos GbGb VrjVriA
rrr

+=   (2) 

 )sintan( bGbGb UVrkB τ−τ=
rr

 ; (3) 

 GBGGbG VUjVUiC coscossincos τ−τ=
rrr

,  (4) 

where  rb - radius of the base cylinder of the gear; 
 UG and VG - curvilinear (Gaussian) coordinates on surface G;  
 τb - is the base helix angle. 
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Substituting (2), (3) and (4) to the (1), one can obtain: 

 
).sintan(       

)coscossin()cossincos(

bbb

bGGGbbGGGbG

rk

VUVrjVUVrir

τ−τ+

+τ−+τ+=
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rrr

 (5) 

To calculate the local geometrical parameters of surface G: normal and principle radii 
of curvature, principle directions etc., it is convenient to apply the first and the second 
fundamental forms, Φ1.G and Φ2.G, respectively, of surface G. 

From definition [7], the first fundamental form Φ1.G of surface G is equal to: 

 22
.1 2 GGGGGGGG dVGdVdUFdUЃ ++⇒Φ ,  (6) 

where the Gaussian coefficients EG, FG and GG are given by: 
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 (7) 

All derivatives necessary to calculate the Gaussian coefficients EG, FG and GG using 
(7) can be calculated from (5) as: 
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According to (8) and (9), the Gaussian coefficients EG, FG and GG of the first 
fundamental form Φ1.G of surface G, are equal to: 
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The second fundamental form Φ2.G  of surface G is determined as follows [7]: 

 22
.2 2 GGGGGGGG dVNdVdUMdUL ++⇒Φ , (11) 

where the Gaussian coefficients LG, MG and NG of the fundamental form Φ2.G are given 
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by: 
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The second derivatives of surface G, necessary to calculate the Gaussian coefficients 
LG, MG and NG of the fundamental form Φ2.G , are: 
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and  
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According to (15)−(17), the Gaussian coefficients LG, MG and NG of the fundamental 
form Φ2.G , are: 

 bbGGGG UNML ττ−=== cossin   ; 0   ; 0 . (18) 

3. CALCULATIONS OF THE RADII OF THE PRINCIPLE CURVATURE OF SURFACE G 

 
The radii of the principle curvature R1..G and R2..G of surface G are calculated as a 

roots of the quadratic equation [1]: 

 ,0)()2()( 2
.2,1

2
.2,1

2 =−++−+− GGGGGGGGGGGGGG FGERLGMFNERMNL   (19) 

which in this case simplifies to: 

 02
.2,1 =−+ GGGGGG FGERNE   (20) 

or, in terms of the parameters of the gear design, 

 .0coscossin 22
.2,1 =τ+ττ− bGGbbG URU   (21) 

Because 0)( 2 =− GGG MNL , the radii of the principle curvature R1..G and R2..G of 
surface G are equal to: 
 bGGG URR τ=∞= cot   ; .2.1 . (22) 

4. CALCULATIONS OF THE RADII OF NORMAL CURVATURE RG  
OF THE WORKING SURFACE OF GEAR TOOTH G. 

According to Euler’s formula, the radius of normal curvature RG of any arbitrary 
section by a normal plane of surface G is equal to: 

 .cossin 22
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.1

1 ϕ+ϕ= −−
GGG RRR  (23) 

Using the result above, (R1.G = ∞) (23) simplifies to 

 ϕ=− 22
.2

1 cosGG RR . (24) 

For that reason, the radius of curvature of the curved line of intersection of surface G 
by an arbitrary normal plane section can be calculated by the formula: 
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ϕ
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G
RR  (25) 

where the value of the angle ϕ is unknown. 
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To determine the value of the central angle ϕ, consider Fig. 3. First of all, it is obvious 
that QK on Fig.3 is equal to UG in (22). So: 
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==
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22

, (26) 

where D − is the pitch diameter of the gear; 
 Db − is the base diameter of the gear. 

 
Fig. 3. Determination of the central angle ϕ. 
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5. EXAMPLE 

It is necessary to determine the radius of normal curvature of the working surface of 
the gear tooth G in a given direction tangent to the helix on the gear pitch cylinder. 
According to a drawing of gear the base diameter of the gear is equal to Db = 45.318; 
pitch diameter D = 48.708; pressure angle (normal) φn = 200; helix angle ψ = 22.50. 

According to an equation in [6, p.30]: 

 nb φψ=ψ cossinsin . (27) 
For that reason, at point K,  
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Then τb = 900 − ψb. So in (22) sot τb = tan ψb, and R2.G = UG tanψn 
As is well known,  
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Consider a plane through point K tangent to surface G. The straight generatrix QK of 
surface G lies in this tangent plane. A straight line through point K tangent to the helix on 
the pitch cylinder coincides with this tangent plane as well. The central angle ϕ sought is 
equal to the angle between the straight generatrix of surface G (or straight line through the 
point K tangent to the helix on the base diameter cylinder) and the straight line tangent to 
the helix on the pitch cylinder. These straight lines are necessary in order to derive the 
equation of the above-mentioned straight lines in a common coordinate system. 
In coordinate system X1Y1Z1 attached to the gear at point K, the straight line is determined 
by the equation 

 b
bd

p kDjDir ψθ++θ= cottan
2

tan
2

*
rrrr

, (32) 

where θ - is a parameter describing the location of an arbitrary point on the straight line 
through points Q and K. 

In matrix form, (32) is 
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Here in (33), at point K (Fig. 3) 
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Fig. 4.  Derivation of the equation of a straight line tangent to the helix  

on the base  cylinder. 

In coordinate system X2Y2Z2 with origin at point K on surface G, the straight line 
tangent to the helix on the gear pitch cylinder is equal to (Fig. 4): 

 ψ+ψ= cossin 22 lklirp

rrr
 (35) 

or in matrix form 
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Now it is possible to write (33) in coordinate system X2Y2Z2 or to write (36) in 
coordinate system X1Y1Z1. Choose the first. 

In this case, matrix [M1→2] of the coordinate system transformation is equal to 
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In (37) we have neglected the translations of the coordinate systems along the 
coordinate axes because the central angle ϕ sought depends on coordinate system 
rotations only and is independent of translations of the origin of the coordinate systems. 

Taking into account (37), the straight line tangent to the helix on the base cylinder (see  
(33)) is determined by: 
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From (36) and (38) and in accordance with [1, p.269], it follows that: 
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At point K, the parameter l = 0. For that reason, (39) simplifies to 
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Taking into consideration (26) and (30), one can obtain: 
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It follows that RG = 1580.292. 
This result shows the normal radius of curvature of surface G in a given direction 

tangent to the helix on the gear pitch cylinder, which is needed in order to calculate the 
parameters of the design of the cutting tool for manufacturing the gear. There is also 
another way to solve the problem. In that method, it is necessary to consider the curved 
line of intersection of surface G of the gear tooth with a plane tangent to the pitch cylinder 
of the gear, and to calculate the curvature of the line of intersection. 

The method described here may always be applied, but is less efficient than other 
methods if calculation of only one single parameter is required. However, when multiple 
parameters of the local geometry (internal or external) of the gear tooth surface must be 
calculated, this method is more efficient than other methods in use. 
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OSNOVNI OBLICI POVRŠINE ZUBACA 
U TEHNOLOGIJI ZUPČANIKA 

Stepan P. Radzevich, Erik D. Goodman, Viktor A. Palaguta 

U radu je prikazan jedan novi pristup istraživanja lokalne topologije involute površine zubaca. 
Pristup je zasnovan na fundamentalnim rezultatima diferencijalne geometrije površina. Ovaj 
metod se može uvek primeniti, ali je manje efikasan ako se proračunavanja vrše samo po jednom 
parametru. Međutim, ako se proračun vrši prema većem broju parametara lokalne geometrije 
površine zubaca, ovaj pristup daje bolje rezultate u onosu na druge metode. 


