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Abstract. The theory of graphs is a very suitable mathematical device for describing 
finite automates. By defining and forming a finite automate graph some problems of the 
finite automate algebra can be solved in a far simpler way. This primarily refers to the 
possibility of optimizing by the decomposition method by which a graph is decomposed 
in its substructures. An algorithm has been formed by which a complex finite automate 
is decomposed into subautomates with the ultimate aim of turning them into elementary 
automates. All the considerations are at an abstract level. 

1. INTRODUCTION 

A relation can be established between the theory of graphs and that of finite 
automates. The possibility of the graphs� matrix description in addition to its geometric 
interpretation enable the solving of some problems related to the finite automate algebra. 
In this paper attention is paid to the so-called problem of automates� decomposition, that 
is, to the problem of decomposing a complex automate into many simpler mutually-
connected subautomates. The ultimate goal is to carry on the decomposition to 
elementary automates and to obtain in this way an optimal structure of the complex 
automate. The introduction of the theory of graphs into this kind of problem is very 
efficient since all the considerations are carried out at an abstract level. 

2. DEFINITION OF FINITE AUTOMATE AND GRAPHS 

The finite abstract automate is defined in the form of the following model: 

 ,   where  (1) ),,,,( ϕψQYXA =
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X- a set of input letters named the input alphabet, 
Y- a set of output letters named the output alphabet, 
Q- a set of internal states named the state alphabet, 
ϕ: Q × X → Q - transition function, and, 
ψ: Q × X → Y - output function. 

The automate performs its operation in discrete time: t = 0,1,2,3, ... , tmax. At the 
initial moment t=0 the automate is in its initial position denoted by q0. At the next 
moment of time t=1 the automate input is added the input letter X1 and under its influence 
the automate passes into the state q1=ϕ(q0,X1), while at the automate output the output 
letter Y1=ψ(q0,X1) appears. At the moment t=2 the automate input is added the second 
output letter X2. The automate then passes into the state q2=ϕ(q1,X2) while at its output 
the output  letter Y2=ψ(q1,X2) appears. The automate�s operation continues in this way so 
long as the input letters of the set X are brought to its input. They are defined for all the 
moments  t=1,2,3...tmax. For  t = tmax+1  they are not defined. This means that at the 
moment  tmax+1  the automate ceases to operate. It can be seen from the description of the 
finite automate�s operation that its input is consecutively been affected by X1, X2, X3, ..., 
Xn  that is, the letters from the set X which makes the input alphabet, and that at its output 
the letters Y1,Y2,...,Ym from the set Y appear, namely those that make up the output 
alphabet, while at the same time the automate passes through internal states q1, q2, ... ,qk 
from the set Q which makes up the state alphabet. It can be concluded that the finite 
automate actually does the mapping of the set of the input letters X into the set of the 
output letters Y while simultaneously satisfying the output function ψ and the transition 
function ϕ. It is this conclusion which makes possible to establish a close connection 
between the finite automate theory and the theory of graphs. 

As it is very well known, mathematically speaking, the graph is assumed to be an 
algebraic structure G = (C, α, β) where α and β are the mappings 

α: C → C 0 

β: C → C 0, C 0 ⊂ C 

satisfying the following conditions 
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The elements of the set {xx∈C0} are termed nodes while the elements of the set 
{xx∈C\C0} are considered as the graph branches. 

3. GRAPH OF THE FINITE AUTOMATE 

The finite automate can be represented in many ways such as: 

- Analytically, that is, in the form of the model given in (1) under the condition that 
the output functions ψ and the transition functions  ϕ  are defined, 

- In a table form, in the form of the tables of the states and those of inputs and 
transitions, 
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- In a matrix form, in the form of respective matrices, and, 
- Graphically, in the form of the finite automate graph, that is, its graphoid.   
The last of the above-mentioned ways will primarily be used in the following 

considerations. For each finite automate there is a an adequate graph formed in the 
following way: 

- each node is allotted one internal state of the automate, 
- each branch of the graph which leads from one node to another is loaded with one 

input letter under whose influence the automate passes from one state to another, as well 
as with one output letter which appears at the automates output during this transition. 

Thus formed graph (multi-graph) is named the graph of the finite automate, that is, 
the graphoid. 

The formation of the finite automate graph will be shown in the following example. 

Example: 

An automate A is given having X = {X1, X2, X3}, Y = {Y1,Y2}, and Q = {q1,q2,q3,q4}, 
while the transition functions ϕ and the output functions ψ are represented by the tables: 

 
The graph of the given finite automate is given in Fig. 1.  

                   
 Fig. 1 
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4. SOME ELEMENTS OF THE ABSTRACT AUTOMATES� ALGEBRA 

By using the abstract automate algebra one of the frequent problems can be solved, 
namely, the problem of forming complex automates out of many simpler ones. This is 
achieved by an adequate connection of automates. There are two basic cases: the series 
connection (Fig. 2) and the parallel connection (Fig. 3). 

    
 Fig. 2 Fig. 3 

Regarding the serially-connected automates A1=(X1,Y1,Q1,ϕ1,ψ1) and A2=(X2,Y2,Q2,ϕ2,ψ2) 
for the obtained automate A=(X,Y,Q,ϕ,ψ) the following conditions should be satisfied 
X=X1, Y=Y2, Y1=X2  and Q=Q1×Q2, while the functions ϕ and ψ are defined in the 
following way: 
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The automates A1 and A2 are connected in such a way that the output signal of the 
automate A1 is led to the input of the automate A2. 

Regarding the parallel-connected automates A1 and A2 for the obtained automate A the 
following should be valid: X=X1×X2,  Y=Y1×Y2,  Q=Q1×Q2 while the functions ϕ and ψ 
are defined in the following way: 
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The inputs of the automates A1 and A2 are simultaneously influenced by the letters 
(Xk

(1), and Xl
(2)) while a couple of letters (Yk

(1), Yl
(2) ) are regarded as the output letter. 

By combining these two connections complex structures can be obtained, namely,  
considerably more complex automates. 

Another frequent problem, opposite to this one, is that of the automates� 
decomposition. In fact, it comes to decomposing a complex finite automate into two or 
more simpler subautomates. 

5. OPTIMAL DECOMPOSITION OF AUTOMATES 

The procedure for decomposing an automate, that is, to decompose it into several 
simpler automates should be carried out until elementary automates are obtained (if it is 
possible). Thus, an �optimal decomposition� would give, for instance, a minimal number 
of logical elements entering into the composition of the automate�s combinatory part. 
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The decomposition of a complex automate is done by applying the algebra of finite 
automate as its has already been mentioned. With respect to it, the parallel, the series and 
the mixed kinds of decomposition can be distinguished. As for the parallel 
decomposition, the automate is decomposed into a product or sum of two or more 
automates which are simpler than the initial one. The series decomposition is achieved by 
decomposing the automate by the superposition operation, while the mixed 
decomposition is carried out by combining both of these two mentioned operations. 

Regarding the fact that one of the ways of representing the finite automate�s operation 
is its graph, that is, its graphoid, the automate�s decomposition can be also solved by 
applying the theory of graph. The problem is now reduced to the decomposition of the 
graph by breaking it into its substructures. The procedure for decomposing the finite 
automate�s graph is carried out in several phases. It is necessary to do the following: 

I. To determine whether the finite automate�s graph is isomorphous, 
II. To find the criteria by which the possibility for decomposition is determined, and, 

III. If the graph G is decomposable, it is necessary to find subgraphs G1, G2, ... which it 
can be decomposed into. 

The theory of graphs knows of many criteria for recognizing isomorphisms. 
According to the Ref. [1, 2], two graphs, G and H, are isomorphous if the assumption 
t∈T exists, where T is a symmetrical group of arrangements of the set of elements, 
namely, the one which brings into an unambiguous accordance all the elements of  xi∈X 
of the graph G and the elements  yj∈Y of the graph H so that the input semidegrees and 
the output semidegress are equal for all the nodes of the graphs G and H. 

An algorithm is suggested for a parallel decomposition of the automate�s graph 
shown in the Ref. [3, 4, 5]. 

A finite automate A is given in the form of its graphoid and it should be decomposed 
into a product of two subautomates A1 and A2. 

Theorem: The automate A having n states, where  n=k×l can be represented by a 
product of the automates of A1 and A2 if and only if there is an arrangement of t∈T of the 
state alphabet which transforms the neighborhood matrix of the automate A into the form 
of a regular elementary connection matrix  (RECM). 

Decomposition Algorithm 

1. Count the number of n  states of the automate A. If n=k×l, proceed to the point 2. If 
n  is a prime number, then the point 7 is to be proceeded to. 

2. The matrix of the connection RA of the automate A should be decomposed into k2 
elements of which every one is of the order 1. If RA is a regular elementary connection 
matrix, then proceed to 6. Otherwise proceed to 3. 

3. According to the connection matrix RA write down the neighborhood matrix R of 
the automate A. Proceed to 4. 

4. Apply the method of the graph decomposition into a product of two graphs while 
looking for an arrangement which translates the neighborhood matrix R into a regular 
elementary matrix R'. If  t∈T is the desired arrangement, proceed to 5. If not, to 7.  

5. Apply the obtained arrangement to the connection matrix RA of the automate A. If a 
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regular elementary connection matrix RA' is obtained, proceed to 6. Otherwise, to 7. 
6. According to the matrix RA', we form the connection matrix RA1 and RA2 of the 

automates A1 and A2 as defined in the theorem. 
7. The automate A is not decomposable. 

The proof of the previous theorem, of the decomposition algorithm and of the 
definitions of all the concepts related to the algorithm are presented in the Ref. [3]. 

By applying the proposed algorithm the connection matrix RA, the neighborhood 
matrix R, and the regular elementary connection matrix RA' are formed on the basis of the 
connection matrixes RA1 and RA2 which define respective graphoids of the subautomates 
A1 and A2. Thus the procedure of decomposition is completed. 

  

6. CONCLUSION 

RA1→A1 
A→RA→R→RA� 

RA2→A2 

By introducing the theory of graphs into the finite automate theory a suitable 
mathematical device is obtained for decomposing a complex automate into its 
subautomates. This should be done by an optimal decomposition until elementary 
automates are obtained. Though the whole procedure is carried out at an abstract level it 
can be important in the phase of designing a complex automate structure when �real� 
elementary automates are passed on to and when an optimal functional scheme is being 
formed. 
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TEORIJA GRAFOVA I NEKE MOGUĆNOSTI OPTIMIZACIJE 
KONAČNIH AUTOMATA 

Miodrag M. Stojiljković, Milorad V. Rančić  

Teorija grafova je veoma pogodan matematički aparat za opisivanje konačnih automata. Kada 
se defini�e i formira graf konačnog automata, neki problemi algebre konačnih automata mogu da 
se re�e daleko jednostavnije. To se pre svega odnosi na mogućnosti optimizacije metodom 
dekompozicije, gde se graf razbija na svoje podstrukture. Formiran je algoritam kojim se slo�eni 
konačni automat razla�e na podautomate, sa krajnjim ciljem da to budu elementarni automati. Sva 
razmatranja su na apstraktnom nivou. 
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