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Abstract. The paper presents a method for calculating the effective coefficient of 
temperature diffusiveness in a setting of bricks. This method can be used to calculate 
the coefficient of temperature diffusiveness of other non-homogenous and homogenous 
materials also. 

The task of determining the temperature field is among the essential tasks of the 
analytical theory of heat conduction. The temperature field equation describing the 
distribution of temperature in space and time contains a physical parameter of substance: 
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named as the heat conduction coefficient and having as the unit m2/s. If the heat 
conduction coefficient λ characterizes the capability of a body to conduct heat, then a as 
the coefficient of temperature diffusiveness represents the measure of thermo-technical 
properties of bodies. The rate of temperature change in any point of the body will be 
higher if the value of the coefficient a is higher. Gases and liquids possess considerable 
heat inertia, and their coefficients of temperature diffusiveness are low. Metals, on the 
other hand, do not have a high heat inertia since their coefficients a have high values. 

In a large number of cases, the coefficient of temperature diffusiveness is determined 
experimentally, and for homogenous materials that are most frequently used in industry 
is given in the form of tables. For the cases of very unhomogeneous materials (bricks 
setting in a tunnel oven), it is more appropriate to refer to the effective coefficient of 
temperature diffusiveness. 

With a staggered type of setting, heat is transmitted both by the mechanism of 
conduction and by convection and radiation through the voids filled up with gas, so that 
the calculation of the non-stationary temperature field is practically almost impossible, 
with questionable accuracy of results. An attempt has been made, therefore, to describe 
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the non-stationary temperature field by means of the effective coefficient of temperature 
difussivity covering all of the present mechanisms of heat exchange, and the problem of 
calculating the non-stationary temperature field within the brick setting has been reduced 
essentially to solving the differential equation of heat conduction. 

The method of determining the effective coefficient of temperature diffusivity 
presented in this paper is analogous to that applied in determining the effective heat 
conduction coefficient of insulation and construction materials. On the other hand, the 
notion of the heat conduction coefficient has been used by other authors [1-5] for the 
distribution of temperature in granulated materials. 

In this example of determining the effective coefficient of temperature diffusiveness 
of a staggered type brick setting, limit conditions close to practice have been used. 
Besides, the procedure is to some extent independent of limit conditions. 

It may be stated that this method is generally applicable, independent of materials, 
and that it can be applied to homogenous materials also. 

With this procedure, differential quotients approximate to difference quotients, so that 
finite local differences are used in determining temperature derivatives. It is assumed that 
inside a homogenous, impermeable solid body, the differential equation of heat 
conduction must be satisfied in any point. 

The differential equation of non-stationary heat conduction is: 
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where: T - thermodynamic temperature; ∆ - Laplas's operator; and a - the coefficient of 
temperature diffusiveness. 

According to differential equation (1) for a, the following applies: 
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The derivative temperature by time can be determined per the well known procedure 
of finite differences, where it is recommended to operate with the central difference, 
because then we would have the square convergence with respect to time steps, which 
means that the approximation of temperature derivatives by time at a predetermined 
value of steps is comparatively more accurate. Other differences for ∆T are also 
comparatively simple to determine, if temperature values on coordinate axes are known, 
i.e. when thermocouples of all of the three coordinate directions are set on a straight line. 

Difficulties arise, however, when the thermocouples are more or less randomly 
distributed in the body, which cannot be avoided in practical measurements on settings in 
tunnel ovens. 

This proposed procedure for determining the effective coefficient of temperature 
diffusiveness has been conceived also for randomly distributed thermocouples. In 
experimental work, thermocouples should be arranged in a single line, with a larger 
number of thermocouples installed in order to allow the consideration of more complex 
cases. 
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The problem of determining the second derivative of temperature by coordinates with 
randomly distributed thermocouples has not yet been solved in a satisfactory way. The 
finite difference procedure is used for that purpose, which provides the same accuracy as 
the procedure of finite differences for special arrangement of thermocouples. With a 
larger number of thermocouples, it is possible to have a more accurate approximation of 
Laplas's operator by means of the finite differences method. 

In carrying out the difference procedure for Laplas's operator, the equation of a three-
dimensional temperature field is developed into Taylor's series: 
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where n is the number of thermocouples, while i, j and k are local differences in relation 
to the reference thermocouple 0(xo, yo, zo) for which the effective coefficient of 
temperature diffusiveness is determined. The development into the series goes up to the 
second member, so that linear convergence may be expected for the difference 
presentation of Laplas's operator. 

Equation (3) may be written for each installed thermocouple, and by using ten 
thermocouples a system of equations with nine unknowns is obtained. In these, the local 
temperature derivatives figure as unknowns, and the temperature difference in relation to 
the central thermocouple as non-homogeneity. 

This system of equations can be presented very conveniently by a matrix system: 
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   (6) TDC =⋅

Thus, the matrix coefficient C should be multiplied with vector D containing the 
unknown temperature derivatives in order to obtain the vector of temperature differences. 

The solution of this system of equations is obtained by multiplying vector T from the 
left-hand side with the inverse matrix of coefficient C. Solving of this system does not 
represent a problem today since such programs are quite common in computer software. 

From the structure of this system, it may be noted that ten thermocouples should be 
installed here in order to get a straightforward solution. In addition to this, it is possible 
also to get the straightforward solution with seven thermocouples arranged in a line. The 
system of equations in this case would have the block-diagonal structure. Analogous are 
also the relations with eight and nine thermocouples. 
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Fig. 1 - Thermocouples arrangement scheme 

By adding the corresponding vector elements, it is possible to derive their Laplas's 
operator from vector D. However, it is possible also to determine the temperature 
gradient, the components of which are already contained in vector D, which is of decisive 
importance with non-stationary problems of heat tension. In addition to this, there occur 
mixed derivatives which indicate in principle a change in the temperature gradient in 
certain direction. By means of these mixed derivatives, it is possible to determine exactly 
the point with the largest gradient, which frequently corresponds to the point with the 
largest heat tension load. If more than ten thermocouples are installed in a brick setting, 
then the system of equations is excessively determined. Then it is possible to take 
additional information by means of known procedures − as is, for example, the method of 
the least squares of errors − in order to increase the statistical safety of results. On the 
other hand, by using more equations, higher derivatives of the temperature field may be 
eliminated, and thereby achieve a better convergence of the procedure. 

It is important for this procedure that in the investigated temperature area a uniform 
change in temperature takes place, i.e. that the sign of the temperature change rate is the 
same at all measurement points. This procedure can be applied appropriately especially 
when uniform limit conditions are given, if possible. For this reason, application is 
limited for this procedure to the bricks heating and cooling stages. In addition to this, the 
most favorable results can be expected at linear heating/cooling processes. 
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JEDNA OD MOGUĆNOSTI ODREĐIVANJA EFEKTIVNOG 
KOEFICIJENTA TEMPERATURNE PROVODLJIVOSTI 

Kemal D�. Tahirbegović 

U radu je prikazana metoda proračuna efektivnog koeficijenta temperaturne provodljivosti 
re�etkastog sloga opeka. Ova se metoda mo�e primeniti za proračun koeficijenta temperaturne 
provodljivosti i drugih nehomogenih, kao i homogenih materijala. 
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