
 

UNIVERSITY OF NIŠ 
The scientific journal FACTA UNIVERSITATIS 

Series: Mechanical Engineering Vol.1, No 4, 1997 pp. 459 - 468 
Editor of series: Nenad Radojković  

Address: Univerzitetski trg 2, 18000 Niš, YU,  
Tel: (018) 547-095, Fax: (018)-24-488 

 

LYAPUNOV EXPONENTS AND STOCHASTIC STABILITY OF 
COUPLED LINEAR SYSTEMS SUBJECTED TO WIDE - BAND 

CORRELATED RANDOM PROCESSES  

UDK: 531.36 

Predrag Kozić, Ratko Pavlović 

Department of Mechanical Engineering, University of Niš, Beogradska 14, P.O. Box 209, 
18000 Niš, Yugoslavia. 

Abstract. The almost - sure asymptotic stability of a class of two degrees of freedom 
linear systems subjected to parametric wide - band correlated random processes of 
small intensity are investigated. By combined use of the method of stochastic averaging 
and well - known procedure due to Khas'minskii, asymptotic expressions for the largest 
Lyapunov exponent for various values of the system parameters are obtained. As an 
application, the example of the flexural - torsional instability of closed thin - walled 
beam acted upon by a stochastically fluctuating of axial loads and ends moments at the 
central cross - section at the beam is discussed. 
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1. INTRODUCTION 

In recent years dynamic stability of elastic systems subjected to stochastically 
fluctuating loads has been explored in the papers of many authors. The stochastic moment 
stability of such systems was examined previously in the paper given by Ariaratnam and 
Srikantaiah [1] using the method of stochastic averaging and the technique of 
Khas'minskii [5,6]. For a similar dynamic system the conditions for the uniform stochastic 
stability of the trivial solution of the corresponding system of Itô - equations have been 
determined by using the Lyapunov functional in the paper presented by Tylikowski [7]. In 
the paper Ariaratnam and Tam [2] the stochastic stability of the solution of the linear 
oscillatory system with one degree of freedom has been analyzed while subjected to three 
correlated random processes. Explicit asymptotic expressions for the largest Lyapunov 
exponent for various values of the system parameters are obtained by using a combination 
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of the method of stochastic averaging and a well - known procedure due to Khas'minskii, 
from which the asymptotic stability boundaries are determined in the papers Ariaratnam 
et. all. [2,3]. In this paper the stability of coupled flexural - torsional instability of a closed 
thin - walled beam under the combined action of axial loads and equal ends moments, 
which are correlated stationary stochastic wide - band processes of small intensity and of 
small correlation time thus being different from the study in the paper given by Jochi and 
Suryanarayan [4] in which these parameters are deterministic, is considered. Conditions 
for stochastic almost - sure asymptotic stability are obtained by a method for the exact 
evaluation of the Lyapunov exponent of linear systems described by stochastic differential 
equations of Itô type that was given by Khas'minskii [9]. 

2. FORMULATION 

Consider a class of the oscillatory systems described by stochastic differential 
equations of the form 
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where the qi are generalized coordinates, βij are damping constants, ωi are natural 
frequencies, kij and cij are constants. The excitations are represented by ξ1(t) and ξ2(t) 
which are taken to be an ergodic stochastic process with zero mean value and a 
sufficiently small correlation time. Equation (1) describe exactly the parametrically 
excited motion of certain non-gyroscopic, discrete, linear elastic systems with n degrees-
of-freedom about the equilibrium configuration qi(t)=0. They also describe approximately 
the motion of certain continuous elastic structures whose equations of motion have been 
discretized by some suitable techniques such as Rayleigh - Ritz, Galerkin, finite 
differences or finite elements. In equation (1), the generalized coordinates qi(t) and 
velocities ( )&q ti  are transformed to polar coordinates by means of the relations, 
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Then one obtains the equations of motion in terms of ai(t) and θi(t) : 
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It is supposed that the damping constants and the stochastic perturbation are small, i.e. 
βij=O(ε), S1=O(ε), S12=O(ε), S21=O(ε), S2=O(ε), Ψ1=O(ε), Ψ12=O(ε), Ψ21=O(ε), Ψ2=O(ε), 
0<ε<<1, where S1(ω), S12(ω), S21(ω), S2(ω), Ψ1(ω), Ψ12(ω), Ψ21(ω), Ψ2(ω) denote the 
cosine and sine power spectral densities of the stochastic processes ξ1(t) and ξ2(t), defined 
by 
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E[⋅] denoting the expectation operation. Under these conditions, the method of 
stochastic averaging Khas'minskii [5] may be applied to equations (3a, 3b) to yield the 
following Itô equations for the averaged amplitudes ai and phase angle θi, whose solutions 
provide a uniformly valid first approximation, 
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where Wj(t), Bj(t),  j = 1,2,...n are mutually independent unit Wiener processes and the 
drift coefficients mai, mθi and the diffusion coefficients σij, µij are given by: 
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In the above expressions, the functions S+, S-, ψ+, ψ- are defined by 
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The n degrees-of-freedom system given by equation (1) is difficult to study in its 
general form. Hence, the discussion from now on will be restricted to two degrees-of-
freedom system described by the equations: 
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The results derived for two degrees-of-freedom system may be generalized to n 
degrees-of freedom system under certain conditions on the spectral density distribution of 
the parametric excitations, and for the case k12=k21=0, c11=c22=β12=β21=0, β11=β1, β22=β2 
(See Section Application). For the two degrees-of-freedom system, the amplitude 
equations of (4a) become 
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It may be noted that the averaged amplitude vector (al, a2) is a two dimensional diffusion 
processes and that the coefficients of the right side terms of equations (6) are 
homogeneous in al, a2 of degree one. Hence the procedure of Khas'minskii [5] may be 
employed to derive an expression for the largest Lyapunov exponent of the amplitude 
process. In order to this a further logarithmic polar transformation is applied: 
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and by the use of Itô's differential rule or otherwise, the following pair of Itô equations, ρ, 
φ  are obtained: 
 ,)dW(+)dt(=d     ,)()( φψφφφφρ ΦΣ+= dWdtQd  (7)  

where W(t) is a Wiener process of unit intensity and 
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The constants λl, λ2 are defined by 
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From the second of equations (7), it is clear that the φ - process is itself a diffusion on 
the first quadrant of the unit circle. If ψ(φ) vanishes in 0 ≤ φ ≤  π/2, the diffusion process 
is singular, otherwise it is non-singular. In this paper we shall analyze only a non-singular 
case which is possible only if the following relation is valid 
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3. NON-SINGULAR CASE 

Since ψ2(φ) does not vanish in 0 ≤ φ ≤ π/2, the diffusion is non-singular, the density 
µ(φ)  of the invariant measure being governed by the Fokker-Planck equation 
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2
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where a prime denotes differentiation with respect to φ. The invariant density µ(φ) which 
satisfies the Fokker-Planck equation is given, see [6,7], 
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Where C is integration constant and 
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the constants a, b and c being given by 
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The form at the integral in equation (l0) depends on the sign of the discriminant ∆, where 
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The invariant density µ(φ) is of the form, 

 ( )
( )

( )
,0   , sin2tanh16exp2sin

2/1

2
1

2/1
12

2 >∆























∆

+

∆

−
−= − φλλ

φψ
φ

φµ
abC  (13a)  

where C is determined from the normalization condition and is found to be, 
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where α is given by 
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For ∆ < 0 these expressions are 
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and for ∆  = 0, 
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Employing Khas'minskii [6] formulation (See also Ariaratnam et. al. [2,3]) the largest 
Lyapunov exponent of system (6) is given by 
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Substituting from equation (8) and (13) in equation (14) and performing the indicated 
integration yields the following expression for the Lyapunov exponent: 
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The system is asymptotically stable with probability one (w. p. 1) if λ is negative and 

unstable w. p. 1 if λ is positive. 

4. APPLICATION 

As an application let us determine the stochastic stability of a thin-walled beam of the 
length L loaded by a random axial force P(t) and by equal random moments M(t) at the 
beam ends, as shown in Fig. 1 is considered. The partial differential equations of such 
elastic systems are given in the paper written by Joshi and Suryanarayan [4] for the 
deterministic case of loading, 

 ( ) ( ) ,0""++''''  A-tMtPEI x =−− υβυρθυυ &&&  (16a) 

 ( ) ( ) .0""+ 0
0  I-tM

A
ItPGJ+ =−







 θβθρυθ &&&  (16b)  

Here EIx and GJ the Euler bending and St. Venant torsional stiffness; P(t) and M(t) are 
the random loads; β, γ  is the viscous damping coefficients; ρ is the mass density at the 
material; A is the area of cross-section; I0 is the polar moment of inertia υ and θ are the 



PREDRAG KOZIĆ, RATKO PAVLOVIĆ 
 

 

466 

infinitesimal flexural and torsional displacements of the cross-section. The primes and 
dots denote partial differentiation with respect to z and t, respectively. For the case of 
simply supported ends, the following boundary conditions must be satisfied: without 
warping and without possibility of rotation, 

 ( ) ( ) ( ) ( )  , 0,",0",,0 ==== tLttLt υυυυ   
 ( ) ( ) .  0,,0 == tLt θθ   

 
Fig. 1. A typical thin-walled beam of warples cross-section 

Considering the fundamental mode, the above boundary conditions are satisfied by 
taking, 
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Comparing equations (17) with (5), k11=ω2, k22=ω1, 2
2
012 ωic = , c21=ω1, so that 

substituting these values in equation (15) leads to the boundary of almost-sure stability, 
obtained by setting λ = 0, is given by the equation 
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5. CONCLUSIONS 

A method of calculating the Lyapunov exponent at a class two degrees-of-freedom 
systems subjected combined random parametric excitations of two correlated stationary 
stochastic wide-band processes has been presented. Explicit expressions for the largest 
Lyapunov exponent, valid in the first approximation for non-singular case, have been 
obtained and applied to an example in the stochastic stability of coupled flexural-torsional 
oscillations of closed thin-walled beam under combined action of axial loads and equal 
ends moments. The amount of damping necessary to ensure stability has been found to 
depend only on those values of excitation spectral density of axial loads near twice the 
eigenfrequency and the sum and difference of the eigenfrequencies of excitation of 
spectral density of the ends moments. 
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EKSPONENTI LJAPUNOVA I STOHASTIČKA STABILNOST 
SPREGNUTIH LINEARNIH SISTEMA POD DEJSTVOM 

POVEZANIH SLUČAJNIH PROCESA ŠIROKOG SPEKTRA 

Predrag Kozić, Ratko Pavlović 

U ovom radu istraživana je skoro sigurna asimptotska stabilnost jedne klase linearnih sistema 
sa dva stepena slobode pod dejstvom parametarskih široko pojasnih korelisanih slučajnih procesa 
malog intenziteta. 
 

 


