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Abstract. In the two delayed coupled excitable systems with internal delays, each of the 
isolated units displays excitable, bi-stable, or oscillatory dynamics. Bifurcation relations 
between the coupling time lag and the coupling constant for different typical values of the 
internal time –lags and parameter  are obtained and analyzed. 
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1. INTRODUCTION 

Possibility to model oscillatory behavior of complex dynamical systems in Physics 
and Biology using delayed differential equations (DDE`s) is natural and well known (a 
sample of references is [1], [2], [3], [4], [5]). Often, in models with more than one vari-
able, several and independent time-lags are justified. However, questions related to sta-
bility and bifurcations for systems of DDE`s with more than one fixed and discrete time-
lags are comparatively more difficult to analyze than the same questions for systems with 
one time-lag. Furthermore, complex dynamical units, like, for example, neurons, appear 
as constitutive elements of more complex systems, and must transmit excitations between 
them. The transmission of excitations is certainly not instantaneous, and the representa-
tion by non-local and instantaneous interactions should be considered only as a very crude 
approximation. Thus, it is of some interest to study the collective behavior of systems 
composed of several units which are coupled by time-delayed interaction, and such that 
each unit if decoupled from the system would have an attractor determined by an intrinsic 
time-lag. 

In particular, we shall be interested in the interplay of oscillations, produced by de-
layed coupling and by internal time-lags, in a collection of the so-called excitable sys-
tems. Excitability is a common property of many complex systems [6]. Although there is 
no precise definition [7] the intuitive meaning is clear: a small perturbation from the sin-
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gle stable stationary state can result in a large and long lasting excursion away from the 
stationary state before the system is returned back asymptotically to equilibrium. For ex-
ample, the excitability is found as the typical behavior of isolated or coupled neurons. 
Transition from excitable to oscillatory dynamics in common neuronal models, i.e. the 
bifurcation of the stationary point into a stable periodic orbit, is usually achieved by 
varying an external parameter. On the other hand, it is known [8] that the same effect can 
be produced by varying an internal time-lag. However, the bifurcation sequence which 
leads from the single fixed point attractor to the single limit cycle attractor is more com-
plicated in the case of the transition caused by the internal time-delay. In this case, there is 
a large region in the parameter domain and nonzero internal time-lags when the isolated 
single unit has two coexisting attractors, the stable fixed point and the stable limit cycle, 
i.e. the system is actually bi-stable. For such values of the internal parameters and time-
lags the delayed coupling produces interesting effects, which we shall analyze in detail.  

As a model of the excitable dynamics we shall use the FitzHugh-Nagumo system in 
the following form [9]: 

 
3 2( 1) ( , )

( , )
ax x a x ax y I X x y

y bx y Y x y
= − + + − − + ≡
= − γ ≡

 (1) 

where a, b ,γ are positive parameters and Ia is an external variable that is dynamically 
independent of x and y . When Ia = 0 and in an appropriate range of a b and γ the system 
displays typical excitable behavior (see the next section). Parameter Ia is commonly used 
to induce the Hopf bifurcation, which replaces the stable fixed point by a stable limit cy-
cle, and thus turns the excitable into the oscillatory behavior. Let us stress that in this pa-
per Ia is always equal to zero. 
A pair of delayed coupled system (1) is given by: 
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where the field X(x,y),Y(x,y) describes the single isolated unit, and the function 
f(xi(t), xj(t − τ)) describes the time-delayed coupling between the two excitable units with 
the coupling constant c. The coupled system (2), for such a b, and γ that the single units 
are excitable, displays transition from excitable to oscillatory behavior as the coupling 
strength and time-lag are varied, but the transition could be through an intermediate re-
gime when the system (2) is bi-stable, with the coexisting stable fixed point and the limit 
cycle. This sequence of bifurcations was studied in the references [10] and [11], and the 
analysis was extended to the case of a chain of N units in [12]. These papers provide an 
extended list of references to the relevant related results, which we shall not repeat here. 

A qualitatively similar transition from excitability to oscillatory dynamics occurs also 
in the system (1) if we assume that there is a possibility of an internal time-delay between 
variables x and y pertaining to the single unit. This phenomenon was studied in [8]. Such 
generalized single unit is described by the following equations: 
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with the same limits on the parameters as in (1) with Ia = 0. 
In this paper we shall study the system (2) but with the fields X(x,y), Y(x,y) given by 

(3). In what follows the time-lags τ1 and τ2will be called internal and τ will be called the 
coupling time-lag. Such a system could be interpreted as a collection of delayed coupled 
complex excitable systems where the internal delays could produce the dynamics of the 
single unit which is akin to that of coupled simple excitable systems. 

2. LOCAL BIFURCATION OF THE FIXED POINT 

In this section we study bifurcations of the zero stationary point (0,0,0,0) of two dif-
fusively coupled FitzHugh-Nagumo excitable systems with internal delay's and the delay 
in the diffusive coupling given by the following general form: 
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In the general form (4) we allow for the possibility that variables xi, yi depend on the 
instantaneous as well as the delayed values of yi, xi, respectively. Linearization of the 
system (4) and substitution 

 2 1( ) ( )( )
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result in a system of equations for constants Ai and Bi. This system has a nontrivial solu-
tion if the following is satisfied: 

 1 2( ) ( ) 0∆ λ ⋅ ∆ λ =  (5) 

where 
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Equation (5) is the characteristic equation of the system (4). Infinite dimensionality of 
the system is reflected in the transcendental character of (5). However, the spectrum of 
the linearization of the equations (4) is discrete and can be divided into infinite dimen-
sional hyperbolic and finite dimensional non-hyperbolic parts [13]. As in the finite dimen-
sional case, the stability of the stationary solution (x1, y1, x2, y2) = (0, 0, 0, 0) is typically, 
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i.e. in the hyperbolic case, determined by the signs of the roots of (5). Exceptional roots 
equal to zero or with zero real part, correspond to the finite dimensional center manifold 
where the qualitative features of the dynamics, such as local stability, depend on the 
nonlinear terms. 

The general system (4) apparently has three independent time-lags. Two internal time-
lags τ1 and τ2 appear independently in the characteristic equation only if a1and a2 are dif-
ferent from zero and unity. However, possible types of dynamics in this most general case 
are qualitatively similar to the situation when there is effectively only one internal time 
lag, which is the case that we shall study further. We shall analyze the roots of (5) in the 
following two special cases: 1. pure delays a1 = a2 = 0, and 2. one internal delay 
a2 = 1; a1 ≠ 0;1. In both of these cases equations (4) have two independent time-lags: one 
for the internal delay and one for the coupling time delay. 

2.1. The case of Pure Delays 

In this case the system of DDE (4) is reduced to: 
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and the two factors of the characteristic equation (6) and (7) become now: 

 1 2( )2
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As we see the internal delays appear only in the combination τ1 + τ2, which will be de-
noted by τ1 + τ2 = τ12. 

We shall seek for the relations τ = f (a, b, γ, a1, a2, τ12, c) so that some solutions of the 
characteristic equation given by (9) and (10) are pure imaginary λ = ±ιω with real and 
positive ω . Under some additional conditions [13], these relations correspond to the 
Hopf bifurcation. Substituting λ = ιω, where ω is real and positive, into first factor, multi-
plying with (−ιω + γ) and separating real and imaginary part gives 
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The same manipulations applied with the second factor result in 
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with F and G given as before. 

Squaring and adding the previous two pairs of equations (11) or (12) result in the 
same parametric equation for the coupling strength 
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The corresponding critical time lag follows by dividing the pair of equations (11) for 
the first factor: 
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and the critical time lag from the second factor is obtained by dividing the pair of equa-
tions (12): 
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Fig.1 a, b, c for (a) 321 =τ=τ (case α);(b) 921 =τ=τ (case β); 
(c) 1521 =τ=τ (case γ) for 02.0,25.0 =γ== ba . 

The bifurcation curves are illustrated in Figs. 1a, b, c. The figures correspond to three 
typical situations that occur in a single isolated unit for different values of τ1 + τ2. The 
internal delays are chosen so that in the case α (Fig. 1a) the internal delays are small and 
the isolated unit has the stable fixed point as the only attractor; in the case β for medium 
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internal time-lags (Fig. 1b) the isolated unit has the stable fixed point and the stable limit 
cycle as the only two attractor and in the case γ (Fig. 1c) for large τ1 + τ2 the isolated unit 
has the stable limit cycle as the only attractor. 

2.2 One Internal Time Lag 

General equation (4) in the case of one internal time-lag with a2 = 1; a1 ≠ 0;1 reduces to 
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with corresponding factors of the characteristic equation: 
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Pure imaginary solutions of (17) and (18) are analyzed is the same way as in the first 
case. The real and imaginary parts for the first factor (17) are: 
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and for the second factor 
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From these equations, in the same manner as in the first case, we obtain equations for 
the coupling strength: 

 FFbaa
IbHac

22)(2
2))((

1
22

22222

+γ+ω+γ
+−ω+γω+

=
 

(21)
 

where 

 
2

1 1
2 2
1 1 1 1 12 (1 )cos( ) (1 )

H aa b aFF a b GG

I a a a a

= γ + − ω − ω

= + − ωτ + −
 



 Coupled Dynamical Systems with Internal Delays and Delayed Coupling: Behavior and Bifurcations 17 

The critical time lags from the first factor are given by 
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and from the second factor by 
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The previous formulas (13-15) for the case of pure delay and for the case with one 

delayed argument (21-23) give parametric representations of the bifurcation curves in the 
plane (c, τ) for fixed values of internal parameters. 

The type of the Hopf bifurcation can be seen by calculation of the variations of the 
real parts Reλ as the time lag is changed true to the critical values. This is given by the 
sign of dReλ/dτ for τ = τc. Using the factorized characteristic equations, we obtain 
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for the first case, and for the second case: 
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Substitution of particular values in this formulas gives the sign of dReλ/dτ and it de-
termines the type of the considered Hopf bifurcation. 

3. INFLUENCE OF CHANGING DIFFERENT PARAMETARS  
ON THE BIFURCATION DIAGRAMS  

In this section we illustrate the effects of different parameters on the bifurcation 
curves (diagrams). 

• Firstly, bifurcation curves for different values of the internal delay (τ12 = τ1 + τ2), 
and for the case of pure delay are shown in Fig. 3.1-20. The range of the illustrated 
values is τ12 = 0 −20, where τ = 20 is roughly one fifth of the refractory period. 
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Fig. 3 1-20 

From the figure we can conclude that: Increasing the internal delay above τ12 = 12 
(roughly one sixth of the refractory period [8]) leads to a noticeable change of the bifur-
cation curves. For τ12 ≥ 18 the bifurcation curves are quite different, developing structures 
that are completely absent at low values of .c = 0 Bifurcation curves bunch near x-axes 
and the stability domain shrinks. 

• Secondly, bifurcation diagrams for the cases with pure delay and with one internal 
delay are compared for different values of the internal delay. The relevant parame-
ters are: τ12 = τ1 = 0;1;4;8;16, and the diagrams are presented in Fig. 3.21-25 
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Fig. 3 21-25 

Comparison of the cases with pure delay and with one internal delay confirms the ex-
pected results that there are no qualitative differences between the two cases for moderate 
values of the coupling delays. Some differences might only occur for quite large values of 
the coupling delays.  

• Finally, we illustrate the influence on bifurcation curves of different values of the 
parameter a1 = 0.01;0.09;0.15;0.27;0.41 for two values of the internal delay. Dia-
grams are shown in Figs. 3.25-29 and 3.29-33  

          
Figs. 3 25-29 and 3.29-33 
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4. CONCLUSION 

We have studied a pair of identical FitzHugh-Nagumo systems with internal and cou-
pling time delays. The parameters of each of the isolated units are such that for the zero 
values of the internal delays the units are excitable, i.e. each has only one attractor in the 
form of the stable fixed point. However, there is a large interval of values of the internal 
delays such that each unit is bi-stable, with the stable fixed point and the stable limit cy-
cle. In this case, each of the units could be considered as modeling dynamics that could 
occur in a collection of delayed coupled simple excitable systems without internal delays. 

We have analyzed the stability of the fixed point of the coupled system. Bifurcation 
curves in the plain of coupling constant and the coupling delay, ((c ,τ) plain), are obtained 
for various fixed values of the internal delays. This indicates that three cases should be 
distinguished, depending on the values of the internal delays. The case when the units are 
excitable, the case when units are bi-stable and the case when units are oscillatory. De-
pendence of the global dynamics on the coupling and coupling delay in these three case is 
studied numerically. 

The following picture emerged from our analyzes. Increasing the internal delay above 
τ12 = 12 leads to noticable change of the bifurcation curves. For τ12 ≥ 18 the bifurcation 
curves are quite different, developing structures that are completely absent at low values 
of . c = 0Bifurcation curves bunch near x-axes and the stability domain shrinks. Compari-
son of the cases with pure delay and with one internal delay confirms the expected results 
that there are no qualitative differences between the two cases for moderate values of the 
coupling delays. Some differences might only occur for quite large values of the coupling 
delays which are of no interest to us.  

There are several directions in which our analyses should be extended. It would be 
interesting to study systems like (4) but with more that two, identical or no identical, units 
and with local or global coupling. Further more, the influence of multiplicative or additive 
noise on the synchronization properties should be studied. 
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VEZANI DINAMIČKI SISTEMI SA UNUTRAŠNJIM 
KAŠNJENJEM I KAŠNJENJEM U VEZI:  

PONAŠANJE I BIFURKACIJE 

Ines Grozdanović 

Proučavana su dva vezana dinamička sistema sa unutrašnjim kašnjenjem i kašnjenjem u vezi. 
Za različite vrednosti unutrašnjih kašnjenja svaki od izolovanih sistema pokazuje: ekscitabilnu, bi-
stabilnu, ili oscilatornu dinamiku. Dobijene su bifurkacione relacije između kašnjenja u vezi i 
jačine veze, i međusobno poređene za različite tipične vrednosti unutrašnjeg kašnjenja, kao i za 
različite vrednosti parametra , za slučaj jednog unutrašnjeg kašnjenja. 

Ključne reči: nelinearni dinamički sistemi, unutrašnje kašnjenje, kašnjenje u vezi,  
bifurkacione krive 


