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Abstract. Structural dynamic modification (SDM) techniques can be defined as methods by 
which the dynamic behavior of a structure is improved by predicting the modified behavior 
brought about by adding modifications like those of lumped masses, rigid links, dampers, 
beams, etc. or by variations in the configuration parameters of the structure itself. Such 
methods, especially those with their roots in finite element models, have often been described 
as reanalysis. Most of the techniques imply a dynamic test at some stage of SDM and 
currently prefer implementation on a personal computer. The need for SDM arises because 
of the demands on higher performance capabilities of complex mechanical and structural 
systems, like machine tools, automobiles, rail vehicles, aerospace systems and high speed 
rotating systems, which require sound dynamic design, i.e. desired dynamic characteristics 
like vibration levels, response, resonances, eigenvalues, dynamic stability and mode shapes. 
Structural dynamic modification implies the incorporation, into an existing model, of new 
information gained either from experimental testing or some other source, which questions 
or improves the accuracy of the model. This paper deals with improving of dynamic 
characteristics of tube collector (protection pipe of conductors of transformer) of the ring 
cross section. It is shown how change of conditions of support can improve dynamic 
characteristics of structure. Distribution of potential and kinetic energy in every finite 
element is used for analysis. In this study it is shown that structural dynamic modification is 
important in structural reanalysis. 
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1. INTRODUCTION 

In general, the structural modification problem with frequency constraints is subjected 
in one of the following ways [1]: 
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(i) Maximize the natural frequency or difference between two consecutive frequencies 
subject to a specified constraint 

 ( ) ( ) 0h v g v g= − =  (1) 

and side constraints on the design variables 

 l u
i i iv v v≤ ≤  (2) 

(ii) Minimize structural weight g (v) subject to behavior constraints 

 2 2( ) 0, 1, 2,...,j j jh v j k= ω − ω = =  (3) 

 2 2( ) 0, 1, 2,...,j j jh v j k k m= ω − ω ≥ = + +  (4) 

where vi is the design variable or updating parameter, l
iv  is the lower limit, u

iv  is the up-
per limit on the design variable, ωj is the jth natural frequency, jω  is the specified value of 
the jth natural frequency, g(v) is the structural weight, g  is the specified weight, n is the 
number of design variables, and m is the number of design constraints. The design vari-
ables depend on the type of optimization problem. In the design of structural components, 
such as stiffened panels and cylinders, the design parameters represent the spacing of the 
stiffeners, the size and shape of the stiffeners, and the thickness of the skin. If the skin 
and/or stiffeners are made of layered composites, the orientation of the fibers and their 
proportion can become additional variables. The sizes of the elements are design vari-
ables of a structural system of fixed configuration (frames, trusses, wings, fuselages, etc). 
The thickness of plates, cross-sectional areas of bars, areas, moments of inertia, and tor-
sional constants of beams represent sizes of the elements. The parameters may be spatial 
if the optimization includes configuration. Also, in dynamics problems, the location of 
nonstructural masses and their magnitudes can be considered as variables. If only fre-
quency constraints are considered in the optimization problem, it is advisable to include 
nonstructural masses in the structural model representing the fuel, payload, attachments, 
etc. For performing a model updating procedure, every parameter in an FE model can be 
considered as a candidate updating parameter. In an FE model for a continuous structure, 
the number of the independent parameters is equal to the number of degrees of freedom of 
the model. 

2. THE DISTRIBUTION OF THE POTENTIAL AND  
KINETIC ENERGY WITHIN THE MODE SHAPES 

The matrix form of the equation of undamped motion of an FE model is: 

 [ ] { ( )} [ ] { ( )} {0}M x t K x t⋅ + ⋅ =  (5) 

The free-vibration natural frequencies and mode shapes of a linear structural system 
can be computed by solving the above eigenvalue problem 

 [ ]{ } [ ]{ }i i iK Q M Q= λ  (6) 
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where [K], [M] are the structural stiffness and mass matrix, respectively. The system ma-
trices are considered to be a general function of the design variables (nodal coordinates, 
area of cross section, moment of inertia, mass, depth...) denoted by 

},...,,...,,{}{ 21 pj vvvvV = , and λi and {Qi} are the eigenvalue and the eigenvector of 
mode i, respectively. 

 { } [ ]{ } { } [ ]{ }T T
i i i i iQ K Q Q M Q= λ  (7) 

The perturbed eigenvalue problem (from eq. 6) can be written as 

 ([ ] [ ]) ({ } { }) ( ) ([ ] [ ]) ({ } { })i i i i i iK K Q Q M M Q Q+ ∆ + ∆ = λ + ∆λ + ∆ + ∆  (8) 

where ∆λi, {∆Q}i, [∆K] and [∆M] are the eigenvalue, eigenvector, the stiffness and mass 
matrices perturbations, respectively.  

The second and higher order terms could be neglected, and after mathematical opera-
tions, the perturbed eigenvalue problem (from eq. 8) can be written as  

 
2 2

, ,
2 2

,

{ } [ ]{ } { } [ ]{ }
{ } [ ]{ }

T T
p r k rr r r r r r

T
k rr r r r

E EQ K Q Q M Q
EQ M Q

−∆ω ∆ − ω ∆
= =

ω ω
 (9) 

because the potential and kinetic energy of the structure for r-th main mode shape, ac-
cording to [2], can be written in the next form: 

 , ,
1 1{ } [ ]{ }, { } [ ]{ }
2 2

T T
p r r r k r r r rE Q K Q E Q M Q= = λ . (10) 

Expression (9) is basic equation for reanalysis of structure, because it shows influence 
of specific finite elements to the eigenvalue. The distribution of energies within of FE 
provides necessary information for optimization. In other words, for every FE where the 
difference between potential and kinetic energy is the largest, the structural modification 
should be performed for the best influence to change governing eigenvalue. The main 
goal of dynamic optimization is to increase natural frequencies and to increase the differ-
ence between them.  

3. DEMONSTRATION EXAMPLES 

The first example problem is the tube collector, see Fig. 1 that is modeled using 11 
beam elements. The influence of the way of supports and increasing of stiffness to the 
eigenvalues will be considered. The initial geometry of the tube is: D=200mm – the ex-
ternal diameter of the tube, d=184mm - the internal tube's diameter, L=22m – the length 
of the tube. All other characteristics, necessary for calculation of tube’s eigenvalues, are: 
Iz=D4π[1– (d/D)4]/64=2228cm4 – the axial moment of inertia of cross section for z axis, 
E=72.109N/m2 – Young's modulo of the tube's material (aluminum), q=1.74kg/m – the 
specific weight of the conductors inside the tube, ρ=2750kg/m3 – mass density. The area 
of cross section of tube is A=48.5cm2, the mass of tube is m = ρAL = 286kg. This rela-
tively simple model is used to verify the implementation of described method using Mat-
Lab 7.  
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Fig. 1 Tube Collector, Modeled by 11 Beam Elements 

The First Case 

First consideration will be taken for the tube collector simply supported on both ends 
(see Fig. 2). In that case transversal degrees of freedom at the first and 12-th nodes are 
constrained to zero, yielding a total of 22 DOF for the model. There are two degrees of 
freedom (DOF) at each node corresponding to translation in the y-direction and rotation 
about an axis normal to the x-y plane. The natural frequencies of the pipe for this case are 
given in the first column in Table 1. It can be concluded that the first frequency is too low 
and consequently dynamic behavior of structure is not good enough. The most important 
thing, dealing with dynamical improvement of structure, is increasing of the lowest fre-
quencies and increasing of the intervals between them. Because of that, it is important to 
examine influences, such are changes of geometrical characteristics of the tube and 
boundary conditions as well (where it is technically possible to make a change), to change 
the values of frequencies. In Fig. 2a the diagram of distribution of potential and kinetic 
energy for this case is given. From diagram it can be concluded that the differences of Ep 
and Ek along the whole span are negligible; then it is inappropriate to change the geome-
try of the section. Also, the increasing mass of the tube the stiffness will increase as well 
while frequencies will not be improved, and vice versa. Because of that, the change of 
boundary conditions will be considered firstly.  

 
Fig. 2 Tube Collector, Simply Supported at Both Ends  

The Second Case 

For the sake of increasing values of all frequencies, especially of the lowest, the fixed 
end is introduced at right end of pipe, while the left end remains hinged (Fig. 3). 
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Fig. 3 Tube Collector, Simply Supported at One End and Fixed at the Other 

Hence, on the right end of the pipe the rotational degree of freedom is constrained to 
zero. It can be concluded that natural frequencies are increased if compared with the case 
of both hinged ends (the natural frequencies of the pipe for this case are given in the sec-
ond column in Table 1). Hence in this case the unchanging total mass of structure dy-
namic behavior is considerably improved. If it is impossible to make technically fixed end 
of the pipe, then changing static system will have similar influence. At the right end two 
hinged supports are introduced at a very short distance. The system from simple sup-
ported beam becomes statically indeterminate, increasing stiffness of the tube (Fig. 4).  

 
Fig. 4 Tube Collector with Two Hinged Supports at the Right End 

We are looking for the distance between supports which will have the same influence 
as ideally fixed end. For distances of 20cm, 40cm, and 60 cm, frequencies are given in 
columns IV, V and VI, in Table 1, respectively. It can be seen that the distance of 40 cm 
leads to the same values of frequencies as ideally fixed end (column II), and that case will 
be taken into the next considerations. Diagrams of distributions of Ep and Ek are given in 
Figures 5, 6, 7 and 8 for the first four mode shapes, respectively. Unlike the diagram in 
Figure 2a, from Figures 5, 6, 7 and 8 it can be clearly seen that the largest positive value 
of the difference between Ep and Ek takes place at the element 11 (the element between 
nodes 11 and 12, see Fig. 4) for all mode shapes. It means that the change of geometry 
should take place at this position in order to have higher values of natural frequencies. In 
columns VII, VIII and X the values of frequencies for some changes of cross sections of 
elements 11 and 12 are given. Change of element 12 does not give any change, which was 
already expected from the diagram, while change of element 11 results in increase of fre-
quency less than 10% (Fig. 11, columns IX and XI). 



6 N. TRIŠOVIĆ 

 
Fig. 2a Distribution of Ep and Ek for the 

Tube, Simply Supported at Both 
Ends for the First Mode Shape 

Fig. 5 Distribution of Ep and Ek for the 
Tube, Simply Supported at One End 
and Fixed at the Other for the First 
Mode Shape 

 
Fig. 2b First Mode Shape for the Tube, 

Simply Supported at Both Ends, 
f01=1.06Hz 

Fig. 5a First Mode Shape for the Tube, 
Simply Supported at One End and 
Fixed at the Second, f01=1.70Hz 

 
Fig. 6 Distribution of Ep and Ek for the Tube, 

Simply Supported at One End and 
Fixed at the Other For the Second 
Mode Shape 

Fig. 7 Distribution of Ep and Ek for the 
Tube, Simply Supported at One End 
and Fixed at the Other for the Third 
Mode Shape 

  
Fig. 6a Second Mode Shape for the Tube, 

Simply Supported at One End and 
Fixed at the Other f02=5.51Hz 

Fig. 7a Third Mode Shape for the Tube, 
Simply Supported at One End and 
Fixed at the Other f03=11.49Hz 
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Fig. 8  The distribution of Ep and Ek for the 
tube, simple supported at one end and 
fixed at the second, IV mode shape 

Fig. 9 A relative ratio between difference 
of potential and kinetic energy for 
each of 12 FE of beam for first four 
modes shape 

  

Fig. 8a  Fourth Mode Shape for the Tube, 
Simply Supported at One End and 
Fixed at the Other, f04=19.67 Hz 

Fig. 10 Fifth Mode Shape for the Tube, 
Simply Supported at One End and 
Fixed at the Other, f05=30.07 Hz 

 
Fig. 11  Tube Collector with Two Hinged Supports at the Right End and  

Modified Cross Section at One Portion of the Length

CONCLUSIONS 

For the sake of improving dynamic characteristics of aluminum tube collector of the 
ring cross section, the change of boundary conditions and geometry are considered. First 
it is considered that the tube is simply supported at both ends, and the obtained results for 
natural frequencies show that dynamic characteristics were not good. Changing boundary 
conditions only at one end, the lowest frequencies are increased for 60% which consid-
erably improves the solution. Using expression (9), i.e. taking opportunity that at the 
places where the difference between Ep and Ek is the largest, structural modifications can 
be done, the analysis is performed along the whole length of the tube. At the place of the 
largest difference between Ep and Ek (Fig. 5, 6, 7 and 8) the stiffness of the cross section 
is increased causing increase of the value of the first natural frequency slightly (Fig. 11 
columns VIII, IX, X and XI in Table 1). In this way it is proven that the change of bound-
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ary conditions is the most efficient way to increase natural frequencies. The ideal case 
would be to have both end fixed, but technically it is impossible (for instance because of 
thermal dilatations) in the case of tube collector of transformer. Only one fixed and the 
second one hinged supports are allowed, which is considered in this paper. 

Table 1  Natural frequencies of the beam for all considered cases for 20 mode shapes, 
and their relative ratios 

ω* ω** ω**/ 
ω* ω*** ω**** ω***** ω****** ω******* ω*******

/ ω**** ω******** ω
******** 

/ ω**** 
I II III IV V VI VII VIII IX X XI 

519.56 562.52 1.08 548.82 550.75 555.48 551.98 552.38 1.00 551.39 1.00 
451.56 491.17 1.09 480.07 483.31 489.82 484.69 485.73 1.01 485.61 1.00 
387.63 421.90 1.09 413.36 417.39 424.18 418.61 420.26 1.01 421.37 1.01 
330.38 359.23 1.09 352.77 356.94 363.03 357.91 359.85 1.01 361.50 1.01 
280.17 304.24 1.09 299.32 303.20 308.26 303.93 305.84 1.01 307.25 1.01 
236.46 256.54 1.08 252.74 256.11 260.16 256.66 258.33 1.01 259.16 1.01 
198.49 215.36 1.08 212.33 215.12 218.29 215.54 216.87 1.01 217.14 1.01 
165.66 180.02 1.09 177.49 179.66 182.02 179.96 180.93 1.01 180.82 1.01 
142.47 151.81 1.07 149.06 150.15 151.37 150.31 150.77 1.00 150.59 1.00 
109.77 117.80 1.07 116.32 118.07 120.26 118.34 119.09 1.01 118.68 1.01 
  88.07   95.49 1.08   94.36   95.75   97.30   95.96   96.47 1.01   96.28 1.01 
  69.00   75.35 1.09   74.46   75.51   76.66   75.67   76.04 1.01   76.16 1.01 
  52.50   57.80 1.10   57.11   57.90   58.75   58.03   58.32 1.01   58.73 1.01 
  38.40   42.75 1.11   42.24   42.81   43.42   42.90   43.15 1.01   43.78 1.02 
  26.59   30.07 1.13   29.71   30.10   30.52   30.17   30.39 1.01   31.10 1.03 
  16.99   19.67 1.16   19.43   19.68   19.95   19.73   19.93 1.01   20.57 1.05 
    9.55   11.49 1.20   11.35   11.50   11.65   11.52   11.68 1.02   12.15 1.06 
    4.24     5.51 1.30   5.44     5.51     5.58     5.52     5.62 1.02     5.89 1.07 
    1.06     1.70 1.60   1.68     1.70     1.72     1.70     1.74 1.02     1.84 1.08 

ω* - The natural frequencies with both joint ends of the beam, ω** - The natural frequencies with fixed 
right end, ω*** - The natural frequencies of the beam from Fig. 4, a = 1.8m; b = 0.2m, ω**** - The 
natural frequencies of the beam from Fig. 4, a = 1.6m, b = 0.4m, (taken in the considerations), ω***** -
 The natural frequencies of the beam from Fig. 4, a = 1.4m; b = 0.6m; ω****** - a = 1.6m; b = 0.4m, 
D = 216mm, d = 200mm, element between nodes 12 and 13 have has been changed, Fig. 4); ω******* - 
The natural frekvencies of the beam from Figure 11, a = 1.6m b = 0.4m, D = 216mm, d = 200mm, 
Iz = 2.831 cm4, between nodes 11 and 13), ω******** - The natural frekvencies of the beam from Figure 
11, a = 1.6m, b = 0.4m, D = 216mm, d = 184mm, Iz = 5058.7 cm4, between nodes 11 and 13. 
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MODIFIKACIJA DINAMIČKIH KARAKTERISTIKA U 
STRUKTURALNOJ REANALIZI MEHANIČKIH SISTEMA 

Nataša Trišović 

Tehnika strukturne dinamičke modifikacije (SDM) može se definisati kao skup metoda pomoću 
kojih se dinamičko ponašanje konstrukcije može popraviti procenom modifikovanog ponašanja 
dobijenog dodavanjem modifikacija kao na primer koncentrisanih masa, krutih veza, prigušenja, 
novih elemenata, isl. ili promenom konfiguracionih parametara u samoj strukturi. Takve metode 
kod kojih je osnov metod konačnih elemenata se često se nazivaju metode reanalize. Potreba za 
strukturnom dinamičkom modifikacijom se pojavila zbog zahteva za višim performansama složenih 
mašina i strukturnih sistema, kao što su mašine alatke, automobili, šinska vozila, avioni, i sistemi 
sa velikim brojem obrtaja, koji zahtevaju zvučno dinamičko projektovanje, odnosno željene 
dinamičke karakteristike kao što su nivo vibracija/odziv, rezonanca/sopstvene vrednosti, dinamička 
stabilnost i modalni oblici. Ovaj rad se bavi poboljšanjem dinamičkih karakteristika jedne cevne 
sabirnice prstenastog poprečnog preseka. Pokazano je kako se promenom graničnih uslova i 
geometrije mogu popraviti dinamičke karakteristike konstrukcije. U toj analizi se koristi raspodela 
potencijalne i kinetičke energije u svakom konačnom elementu. Takođje, pokazano je da dinamička 
modifikacija igra važnu ulogu u reanalizi konstrukcija. 

Ključne reči: dinamička modifikacija konstrukcija, sopstvene vrednosti, potencijalna i kinetička 
energija 


