
FACTA UNIVERSITATIS  
Series: Mechanical Engineering Vol. 3, No 1, 2005, pp. 69 - 80 

A MATHEMATICAL MODEL OF THE TEMPERATURE FIELD 
IN A FLAT PLATE AT NON-STATIONARY HEATING IN THE 

FLOW-THROUGH OVEN   

UDC 536.24 : 697.2 

Kemal Tahirbegović1, Dimitrije Voronjec2  
1Faculty of Mechanical Engineering, University of Priština 

2Faculty of Mechanical Engineering, University of Belgrade  

Abstract. The paper presents a developed two-dimensional model for the calculation 
of the temperature field in a flat plate of finite thickness at non-stationary heating in 
the flow-through oven. An exact analytical solution could not be given for the derived 
differential equation of non-stationary heat transfer, and, therefore, an approximate 
numerical method of finite differences was applied. The differential equation of non-
stationary heat conduction has been transformed into a difference equation, with the 
two-dimensional plate divided by a net of rectangles. The calculation was performed 
for the whole set of columns, and the distribution of temperatures was determined and 
shown for the characteristic values of dimensionless parameters. 
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INTRODUCTION  

Working on mathematical modeling of heat calculations for flow-through ovens, the 
authors of this paper also resolve the problem of non-stationary radiation heating of a fini-
te thickness plate by developing calculation programs. In the calculation of ovens, consid-
ering Ref. [1, 2], two simplified mathematical models were used, namely, the »agitator« 
and »piston-type« flow models. The basic characteristic of these models is that they de-
scribe the boundary cases of the process in real ovens. The »agitator« model assumes that 
the products of combustion in the working area of the oven are ideally mixed up and that 
the temperature, concentration and thermal and physical properties of effluent gases are 
uniform in the entire area of the oven. The »piston-type« flow model assumes an oven 
with flat profiles of flow, and that the gas properties are uniform in lateral directions (pla-
nes perpendicular to the direction of flow and to the outer surface of the product), chan-
ging only in the longitudinal direction, i.e. in the direction of flow. In this approach the 
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mathematical description was simplified by the introduction of effective emissivity in the 
manner presented in the doctoral dissertation of Mr. W. Schupe [3]. In addition to this ba-
sic piston-type flow model, the model of our analysis was also the piston-type flow one 
with superimposed energy reaction and the piston-type flow model with energy introdu-
ced continually. Results of mathematical modeling, graphics of the calculated heat fluxes, 
temperature distribution, as well as theoretical comparisons and characterization of diffe-
rent oven models are presented. 

MATHEMATICAL PROBLEM SETUP 

In order to resolve the problem of heat conduction in a solid body, it is necessary to 
define the equation of the temperature field describing the distribution of temperatures in 
the body and time. In the case of heating a flat plate of finite thickness and an infinite 
length in flow-through ovens, we deal with single-dimensional and non-stationary conduc-
tion of heat, where temperature of the plate is dependant only on time and the coordinate 
of the plane perpendicular to the direction of transportation and the plate area. 

Therefore, to describe the non-stationary process of heat conduction in a solid body 
element of dx length, we use the single-dimensional Fourier's differential equation: 
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where τ is time, and a temperature conductivity. For time τ at an arbitrary point x and with 
constant speed of transportation v, we can write: 
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so that equation (1) now takes the following form: 
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Fig. 1. − Position of Coordinate Axes with the Finite Thickness Plate 
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The coordinate system x, y is shown in Fig. 1. In addition to this, using oven length L 
and flat plate thickness δ, we can define dimensionless coordinates ξ = x / L and η = y / δ, 
so that equation (3) can have the following dimensionless form: 
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where θs = T / Tguis the dimensionless temperature of the plate. 
The following dimensionless parameter appears in equation (4): 
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representing the Peclet's number. Differential equation (5) is further rearranged by intro-
ducing the modified Peclet's number: 
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into the dimensionless form 
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In order to determine the temperature field, it is necessary to have two boundary con-
ditions. The boundary conditions, in this case, are: 

1. The heat flux that is transferred from the gas to the upper surface of the plate is given 
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2. The heat flux that is transferred to the surroundings from the lower side of the plate 
is given 
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The radiation heat flux transferred from the gas (combustion product) to the flat plate 
is determined by the following expression: 
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where εef − effective emissivity, σ − Stefan-Boltzmann's constant, Tg − temperature of the 
gas, whereas Tso − temperature of the upper plate surface. 

By making the right-hand sides of equations (8) and (10) equal to each other, we obtain: 
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or in the dimensionless form 
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The Thring's number, frequently referred to in the literature also as the Sparrow's 
number [4, 5], representing the relation of the enthalpy transferred by radiation to the pro-
duct surface and the heat transferred by conduction through the product. 

In addition to this, heat losses through the differential wall of the oven are calculated 
using the expression: 
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By making the right-hand sides of equations (9) and (14) equal to each other, we obtain: 
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or in the dimensionless form 
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where 
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The discussed problem is fully defined if the initial condition characterizing the distri-
bution of temperature in the solid body at the initial point of time is also known. It is assu-
med, in this case, that the solid body initially has a constant temperature. The Fourier's 
differential equation of the non-stationary heat conduction at these initial and the above 
defined boundary conditions mathematically describes fully this problem. 

NUMERICAL METHOD SETUP 

In the cases where it is not possible to determine the analytical solution of differential 
equation (7), the approximate method of finite differences can be used.  

The two-dimensional plate (Fig. 2) is divided by a net of rectangles in ∆ξ and ∆η 
steps, the size of which can be selected freely. A larger number of steps results in a higher 
accuracy, but it requires more calculation. For the current local coordinates, we can write: 

 ξ∆⋅=ξ n  (18) 

 η∆⋅=η k . (19) 
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Fig. 2. − The Plate Element that a Net of Points is Established for 

Differentials dξ and dη in equation (7) should be replaced with ∆ξ and ∆η intervals. 
The values of these intervals can be selected independently of each other. In order to have 
stable mathematical calculation without any senseless temperature oscillations, the criteria 
of similarity from the literature must be observed [6]. 

Local coordinates of the oven cross section are divided into a large number of steps 
(Fig. 2). The solid body (heated plate) is divided by a net of N⋅ K rectangles. Division in 
N sections is sufficient for the calculation of the gas and oven walls temperature values. 

By means of the temperature values of one column (direction η), it is possible to cal-
culate those of the columns that follow. Therefore, the values for the first column must be 
known in advance. To determine the total temperature field, it will be necessary to per-
form the calculation for N columns. 

It is also necessary to explain briefly the procedure of calculating the values for new 
(or the following) columns. The temperatures are marked with double indexes, with the 
first index k relating to the row, and the second index n denoting the column. Transition 
from one column to another, according to equation (1), is the time interval (direction ξ), 
and transition to another row is the local step (direction η). 
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Fig. 3. − Position of the Auxiliary Point for Calculating the Temperature of the Plate 

Upper Surface  

It is desirable that the representative temperature θs (k,n) should relate to the middle 
plane of the plate (Fig. 2). However, problems occur with regard to satisfying the bound-
ary conditions, because these relate to temperature θs (0,n) of the plate upper surface, and 
not to temperature θs (1,n) inside the plate. In this case, an auxiliary point of temperature 
θs (PO,n) shown in Fig. 3 is introduced. 

The differential equation of non-stationary heat conduction (7) is converted into the 
deference equation using the general formula of the second derivative according to H. 
Schuh [6]: 
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in which h represents the width of step ∆η. Then temperature values for the new column 
are calculated using equation (20). 
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where 1 ≤ k ≤ K. 
It is evident that temperatures of boundary surfaces cannot be determined by means of 

equation (21), but rather by using boundary conditions. The temperature gradient on the 
body surface can be described by the temperature difference between θs (PO,n) and 
θs (0,n). For the boundary condition given by equation (12), having in mind that the step 
width in direction ξ is small, we can write down with sufficient accuracy: 
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In this equation, the unknown temperature values are θs (PO,n + 1) and θs (0,n + 1). 
However, according to Fig. 3, the following temperature differences are of the same va-
lue, i.e.: 

 ),1(),0(),0()PO,( ssss nnnn θ−θ=θ−θ . (23) 

This, of course, is valid for time interval n + 1, and, therefore, the temperature on the 
plate upper surface can be obtained by means of equations (22) and (23): 
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and also the temperature of the auxiliary point 
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where temperature θs (1,n + 1) is determined by equation (21). 
The same problem occurs when determining the temperature of the plate lower surfa-

ce. Taking into account the second boundary condition, and by introducing in the above 
described manner second auxiliary point (P δ) and index δ for values on the plate lower 
surface, the following differential equation is obtained: 
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Equality of temperature differences figures here as a condition for determining the 
auxiliary point: 
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Temperature values for the plate lower surface and the auxiliary point are obtained 
from equations (26) and (27): 
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All product temperature values in the column that follows are determined in this way. 
By transforming the differential equation for the gas temperature into the difference equa-
tion, it is possible to perform the calculation for the whole set of columns. Care should be 
paid in this to select the step width properly for calculation stability, as usability of results 
depends on that.  

If simplexes of dimensionless coordinates and temperatures are taken into account, it 
follows that for the mathematical description of the radiation heat transfer in flow-through 
ovens seven mutually dependent parameters of similarity are used [1]. As the result of 
transformations performed in the equations, the following dependences are obtained: 
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In the above equation, the following dimensionless parameter occurs: 
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representing the Konakow's number, which apparently characterizes physically the rela-
tion between the enthalpy of the gas flow and the heat flux transferred by radiation. The 
other dimensionless parameter in equation (32) 

 
s

.

s

g

.

cm

cmg

⋅

⋅
±=ω , (33) 

represents the relation of the heat capacities of the gas and solid body. The sign + denotes 
the concurrent medium flow, whereas the sign - denotes the countercurrent flow. 

If the convection mechanism of heat transfer is also included, then, besides the seven 
parameters of similarity, the Biot's and Stanton's numbers come into the picture. These 
values are connected by the following relation: 

 
St
BiPe* =⋅ω . (34) 

The set of similarity parameters for the model of the radiation and convection heat 
transfer is reduced in this way from seven to five parameters. 

For further simplification, it is assumed that the observed oven is adiabatic (ideally in-
sulated in relation to the environment) and that the exchange of heat in it develops exclu-
sively by radiation. It is apparent that in this case the number of dimensionless parameters 
is reduced to the relation of the heat capacities of the gas and of the solid body, and the 
modified Peclet's, Konakow's and Thring's numbers. The effects of these parameters on 
the distribution of temperature and exchange of heat fluxes on different oven models are 
investigated by varying individual parameters. Three of these parameters are selected 
freely while the fourth is determined from dependence (31). 

RESULTS OF TEMPERATURE FIELDS CALCULATION 

For the calculation of the temperature field in the flat plate for different oven models 
from the literature [1], the following numerical values for the dimensionless parameters 
were used: Ko = 0,75; Th = 1, 1=ω  i  75,0Pe* = . 
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Fig. 4. − Distribution of Temperature in the Flat Plate (Agitator) 
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Fig. 5. − Distribution of Temperature in the Flat Plate (Piston-type Flow Model − 

Countercurrent)  

Boundary condition: 0)(G)(
Ko
1

d
d

ozg
4
so

4
g

g =θ−θ+θ−θ+
ξ

θ
 [1] 



K. TAHIRBEGOVIĆ, D. VORONJEC 78 

 
Fig. 6. − Distribution of Temperature in the Flat Plate (Piston-type Flow Model − 

Concurrent) 
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Fig.7. − Distribution of Temperature in the Flat Plate (Piston-type Flow Model with 

Energy Addition).  
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Boundary Condition: 
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Temperature distribution in a finite thickness plate (direction η) for different oven mo-
dels is shown in Figs. 4 − 7. With piston-type flow models having the concurrent flow, 
high densities of the heat flux occur, quite naturally, on the inlet side of the solid plate, 
whereas with the piston-type flow models having the countercurrent flow they occur on 
the outlet side of the solid plate. This is the reason why the temperature difference betwe-
en the surface of the plate and its middle at the concurrent flow is the lowest, and the hig-
hest with the countercurrent flow. 

The agitator and piston-type flow models with ceiling and side firing are between the-
se two boundary cases.  

In addition to this, temperature distribution depends both on the method of controlling 
the process and on the heat conductivity and thickness of the plate. These values are con-
tained in the Thring's number, and, therefore, effects of this number on the distribution of 
temperature in the flat plate should be investigated. 

List of Designations 

a − temperature conductivity 
A − area 
b − oven width 
ef − effective 
g − gas, mass portion of the fuel 
gu − gas at the oven inlet 
gub. − loss 
h − step size 
k − heat transfer coefficient, row index 
K − number of rows 
L − oven length 
n − measure of energy distribution along the oven, column index 
N − number of columns 
o − environment 
PO − auxiliary point on the plate upper surface 
Pδ − auxiliary point on the plate lower surface 

.
Q  − heat flux 
s − solid body (plate) 
so − plate upper surface 
sδ − plate lower surface 
T − thermodynamic temperature 
v − velocity 
z − wall 
x − coordinate 
y − coordinate 
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Greek Letters: 

δ − plate thickness 
ε − emissivity 
η − dimensionless coordinate 
θ − dimensionless temperature 
λ − heat conductivity 
σ − Stefan-Boltzmann's constant 
ξ − dimensionless coordinate 
τ − time 
∆ − finite difference of two values 
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MATEMATIČKI MODEL TEMPERATURNOG POLJA 
U RAVNOJ PLOČI PRI NESTACIONARNOM ZAGREVANJU  

U PROTOČNOJ PEĆI 

Kemal Tahirbegović, Dimitrije Voronjec 

U radu je razvijen dvodimenzionalni model za proračun temperaturnog polja u ravnoj ploči 
konačne debljine pri nestacionarnom zagrevanju u protočnoj peći. Za izvedenu diferencijalnu 
jednačinu nestacionarnog provođenja toplote nije se moglo dati tačno analitičko rešenje, pa je 
korišćena približna numerička metoda konačnih razlika. Transformisana je diferencijalna 
jednačina nestacionarnog provođenja toplote u diferencnu, a dvodimenzionalna ploča izdeljena je 
mrežom pravougaonika. Proračun je izveden za ceo set kolona, a utvrđena je i grafički prikazana 
raspodela temperatura za karakteristične vrednosti bezdimenzionalnih kompleksa. 

Ključne reči: matematički model, ravna ploča, temperaturno polje, numerička metoda, protočna peć 
 


