
FACTA UNIVERSITATIS  
Series: Mechanical Engineering Vol. 3, No 1, 2005, pp. 59 - 68 

CALCULATION OF THE STARTING REGIME OF THE POWER 
TRANSMISSION SYSTEM WITH A HYDRODYNAMIC 

COUPLING AND A DRIVING MOTOR   

UDC 621.817.032 

Božidar Bogdanović, Živan Spasić, Jasmina Bogdanović-Jovanović  

Faculty of Mechanical Engineering, A. Medvedeva 14, Niš, Serbia and Montenegro  

Abstract. In this paper a grapho-analytical procedure for calculating a starting 
regime of the power transmission with a hydrodynamic coupling and a driving motor is 
presented. The presented iterative procedure for solving this problem provides for 
obtaining the starting power transmission system regime with accuracy determined in 
advance. The number of iterative steps depends on the defined accuracy. 
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1. INTRODUCTION  

The layout of the power transmission with a hydrodynamic coupling is shown in 
Fig. 1. In general, between the driving motor (M) and the hydrodynamic coupling (HDC) 
a mechanical gear (mm1) can be installed; also, between the hydrodynamic coupling and 
the driven mechanism a mechanical gear (mm2) can be installed. 

 
Fig. 1. 
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Denotations in Fig. 1 and further in the text: 
Mm, ωm  − torque and angular velocity of the driving motor shaft, 
M1, ω1  − torque and angular velocity of input shaft of the hydrodynamic coupling, 
M2, ω2  − torque and angular velocity of output shaft of the hydrodynamic coupling, 
Mo, ωo  − torque and angular velocity of output shaft of the power transmission, 
i1/m = ω1 / ωm − transmission ratio in mechanical gear mm1, 
i = ω2 / ω1 − transmission ratio in hydrodynamic coupling, 
i0/2 = ω0 / ω2 − transmission ratio in mechanical gear mm2. 
The parameters of the common operation of both the driving motor and the driven unit 

are determined from the dynamic balance requirement for all components in the transmis-
sion chain. Therefore, in addition to the torque characteristics of the driving motor and the 
load in the output shaft of the power transmission, it is necessary to know coefficients of 
the torque transformation and angular velocities in all the components of the power 
transmission. Likewise, for transient operating regimes it has to be known inertia moment 
of all the rotating masses in the transmission chain. 

The driving motor torque, in general, depends on angular velocity (ωm) and magnitude 
of the regulation parameter of motor (αm); Mm = Mm(ωm,αm) – torque characteristic of the 
motor, which is given by manufacturer, usually as a diagram. For unregulated electromo-
tors, as squirrel cage asynchronous motors, that are often used, and are the subject of this 
paper, the electromotor’s torque characteristic is unambiguous function Mm(ωm), given by 
diagram. 

The output shaft torque of power transmission (Mo) can be given as a function of an-
gular velocity of this shaft, Mo = Mo(ωo), therewith a shape of this curve (function) during 
the time (i.e. operating conditions) is changeable.  

The dimensionless torque coefficient, transmitted by the hydrodynamic coupling, is 
defined as: 

 M 5 2
1

M
R

λ =
ρ ω

, (1) 

where: ρ-density of working liquid, R – maximum internal (circulating) radius of the hy-
drodynamic coupling, M – torque of the hydrodynamic coupling and ω1 – angular 
velocity of the input shaft of the hydrodynamic coupling. 

The dimensionless torque coefficient of the hydrodynamic coupling is functional de-
pendence λM(i), usually given by manufacturer as a diagram or a chart. 

The nominal transmission ratio of the hydrodynamic coupling (i = i+) is transmission 
ratio at maximum efficiency, where i+ = 0,96÷0,98 (0,97). 

Efficiency of the hydrodynamic coupling is given as:  

 ηHDS = i, for  i ∈ [0,i+], 

and for i ∈ [i+,1] efficiency decreases rapidly, so as with i = 1 normal power transmission 
through the coupling is terminated. 

In the cases when the flows through the hydrodynamic coupling are auto-modeled in 
the Reynolds number (for fluid flows where the friction factor does not depend on the 
Reynolds number), dimensionless torque coefficient λM(i) does not depend on angular 
velocity of the coupling’s input shaft. According to the data given in the References [2], 



 Calculation of the Starting Regime of the Power Transmission System with a Hydrodynamic Coupling... 61 

the fluid flow in the hydraulic coupling can be considered auto-modeled in the Reynolds 
number if: 

 
5

1 2

0,875 10
R
⋅ν ⋅

ω ≥ , (2) 

where ν – kinematic viscosity of the operating fluid [m2/s]. 
Using dimensionless λM(i) characteristic of the hydrodynamic coupling, according to 

equation (1), a spectrum of parabolas can be defined (drawn) in M−ω1 diagram of charac-
teristics 

 2
M 1M(i) K (i)= λ ω ,  5(K R const.)= ρ = ,  for  i = const., (3) 

which represent curves of torque transmitted by the hydrodynamic coupling with different 
values of transmission ratio (for i = const., i ∈ [0,1]). 

According to the index in Fig. 1, the torque of the output shafts of mechanical gears 
mm1 and mm2 can be calculated, in steady-state operating regime, by using the following 
formula: 

 mm1
1 m

1/ m

M M
i
η

=    and   mm2
o 2

0 / 2

M M
i

η
=  ,   for ω = const., (4) 

where ηmm1 and ηmm2 are efficiencies of mechanical gears. 
In the steady-state operating system regime, torque and angular velocity of motor, re-

duced on input shaft of the hydrodynamic coupling, is changing by the law: 

 mm1
1 1.m m

1/ m

M M M
i
η

= = ,    1 1/ m miω = ⋅ω     for  ω = const., (5) 

Using equations (5), torque characteristic of motor Mm(ωm), in steady-state operating 
regime of the system, can be mapped into the torque characteristic of motor reduced on 
input shaft of the hydrodynamic coupling M1.m(ω1) (sl.2a). 

 
Fig. 2. 
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In steady-state operating regime of the system, torque transmitted by the hydrody-
namic coupling, is equal to the torque of input shaft of the coupling, therefore, the com-
mon operating regimes of the motor and the hydrodynamic coupling, for different values 
of transmission ratio, are defined by intersection points of reduced torque characteristic 
M1.m(ω1) and parabolas defined by the equation (3), as is shown in Fig. 2a. 

Since:  

 1 2M( ) M( )ω = ω ,     2 1iω = ⋅ω ,     for ω = const., (6) 

points of steady-state operating regime of the hydrodynamic coupling from 
M(ω1) = M1.m(ω1) characteristic in Fig. 2a can be mapped into M(ω2) characteristic 
(Fig. 2b). 

Loading torque Mo and angular velocity of the output shaft of the power transmission, 
reduced on output shaft of the hydrodynamic coupling, are changing by the law: 

 0 / 2
2 2.0 0

mm2

i
M M M= =

η
,     0 0 / 2 2iω = ⋅ω . (7) 

The loading torque of the output shaft of the power transmission can be given by ana-
lytic function M2(ω2), and using equation (7) the graph of this function can be mapped 
into a curve of the loading torque reduced on the output shaft of the hydrodynamic cou-
pling, M2.0(ω2), as is shown in Fig. 2b for one form of loading. 

In steady-state operating regime of the system, the operating regime of the hydrody-
namic coupling is defined by intersection point of function graph of loading torque re-
duced on the output shaft of the hydrodynamic coupling M2.0(ω2) and graph of the torque 
characteristic of common operating of hydrodynamic coupling and motor M(ω2), repre-
sented in Fig. 2b with point R. The torque that is transmitted by the hydrodynamic cou-
pling in this operating regime is illustrated as M(R), and angular velocity of the output 
shaft of the coupling as ω2

(R). The number of revolutions of the input shaft, in this operat-
ing regime (ω1

(R)), is equal to the number of revolutions on characteristic M1.m(ω1) (Fig. 2a) 
that corresponds to the torque M1.m = M(R). The transmission ratio of the coupling is 

(R) (R) (R)
2 1i /= ω ω . 

Knowing operating parameters of the hydrodynamic coupling (M(R), (R )
2ω , (R )

1ω , i(R)), 
in steady-state operating regime of system, torque and angular velocity of the motor are 
calculated by using equations (5):  

 (R) (R)1/ m
m

mm1

i
M M=

η
,

(R)
(R ) 1
m

1/ mi
ω

ω = . 

Point Rm ( (R )
mω , (R )

mM ) must be on graph Mm(ωm) of the motor characteristic, what is 
also a procedure of accuracy of grapho-analytic method used for solving this problem.  

For known (R )
2ω , using the second equation of equations (7), can be also calculated 

(R ) (R )
0 0 / 2 2iω = ⋅ω . 
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2. EQUATIONS OF DYNAMIC BALANCE FOR  
STARTING OPERATING REGIMES OF THE SYSTEM 

The equation of dynamic balance for transmission chain, from the driving motor to the 
pump impeller output of the hydrodynamic coupling, can be written as: 

 
dt

d
IMM 1)r(

1.mm.1
ω

−= , (8) 

where: M – torque transmitted by the coupling, M1.m – torque of the driving motor (ac-
cording to equation (5)), reduced on input shaft of the coupling, )r(

1.mI  - inertia moment of 
rotating masses in this transmission chain, reduced on the input shaft of the hydrodynamic 
coupling. For transmission chain shown in Fig. 1, it can be written as: 

 1m2
m/1

1mm)r(
1.m II

i
I +

η
= , (8’) 

where: Im – inertia moment of the driving motor shaft and all rotating masses attached 
(rotor of the electro-motor, operating gear mm1), I1 – inertia moment of the input shaft of 
the hydrodynamic coupling and all rotating masses attached, including operating fluid in 
the pump circuit of the hydrodynamic coupling.  

The equation of dynamic balance for transmission chain from the turbine circuit of the 
hydrodynamic coupling to the shaft of the driven mechanism can be presented in a form: 

 (r) 2
2.0 2.0

dM M I
dt
ω

= + , (9) 

where M2.0 – loading torque (according to equation (7)), reduced on output shaft of the 
hydrodynamic coupling, and (r)

2.0I  - inertia moment of rotating masses in this transmission 
chain. For transmission chain shown in Fig. 1 it is:  

 0
2mm

2
2/0

2
)r(
0.2 I

i
II

η
+= , (9’) 

where: I2 – inertia moment of output torque of the hydrodynamic coupling and all rotating 
masses attached, including operating fluid in turbine circuit of the hydrodynamic cou-
pling, I0 – inertia moment of driven mechanism shaft and all rotating masses attached.  

Eliminating M from equations (8) and (9), an equation of dynamic balance for all 
transmission chain is obtained as: 

 
dt

d
I

dt
d

IMM 2)r(
0.2

1)r(
1.m0.2m.1

ω
+

ω
+= . (10) 

In steady-state operating regime M1.m = M2.0, so therefore, according to the equation 
(10), it can be concluded that at the end of the starting regime, acceleration of both shafts 
of the hydrodynamic coupling (input and output shaft) are gravitating to the zero value. 

To determine the functional relation between angular velocities of input and output 
shaft of the hydrodynamic coupling (ω1(ω2)) in starting operating regime of the system, it 
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is necessary to know the universal characteristic of the coupling, that is represented by 
graph spectrum of torque characteristics M(ω2) transmitted by the coupling with different 
angular velocity of input shaft of the coupling (Fig. 3a). The dash-point line in Fig. 3a 
represents a graph of function M1.m(ω2). 

If starting operating regime has a very low value of acceleration (“quasi-static”), ac-
cording to the intersection points of graphs M2.0(ω2) and M(ω2), for ω1=var., in the uni-
versal characteristic of the hydrodynamic coupling (Fig. 3a), functional relation ω1(ω2) 
could be determined, and its graph is shown in Fig. 3b as a full line. Point R in Fig. 3a 
represents a steady-state operating regime. 

 
Fig. 3. 

For a real problem, as is described with equation (9), because of inertia of the trans-
mission chain from the hydrodynamic coupling to the driven mechanism, relation ω1(ω2) 
can be determined according to the intersection points of function diagram M2(ω2), on the 
universal characteristic of the coupling, (for different values of ω1) and functional dia-
gram (r)

2.0 2.0 2M I d / dt+ ω , what is shown in Fig. 3a as curve 1. Graph 1 (ω2 = ω2
(R)) in point R 

is becoming graph M2.0(ω2), but the law of change dω2 / dt = f(ω2) is unknown; therefore, 
the law of change ω1(ω2) has to be determined by iterative procedure. 

Assume that the fluid flow in the hydrodynamic coupling is auto-modeled in the Rey-
nolds number, using equations (9) and (3), for ω2 = ω2

(s), ω2 = 0 (i = 0), we obtain a for-
mula for calculating angular velocity of input shaft of the hydrodynamic coupling at the 
moment when its output shaft has been started: 

 
(s )

1 1

2
2.0 2 2.0

(s)
1 5

M

dM ( 0) I ( )
dt

(i 0) R
ω =ω

ω
ω = +

ω =
ρλ = ⋅

, (11) 
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where (s )
1 1

2(d / dt)
ω =ω

ω  − acceleration of output shaft of the hydrodynamic coupling in the 

moment of starting. 
Since starting the input shaft of the hydrodynamic coupling cannot take place until the 

input shaft reaches a suitable number of revolutions (ω1= ω1
(s)), the system’s starting re-

gime can be divided into two phases: 
1. starting phase until output shaft of the hydrodynamic coupling starts rotating, and, 
2. starting phase from the moment of starting output shaft of the hydrodynamic cou-
pling until a steady-state operating regime is established. 
Starting regime until the output shaft of the hydrodynamic coupling starts rotating (t1) can 

be determined by solving differential equation (8). For M = M(i = 0) = ρλM(i = 0) ⋅ R5 ⋅ ω1
2, 

with changing angular velocity ω1 from 0 to ω1
(s): 

 
(s )
1

(r ) 1
1 m.p

10

dt I
f ( )

ω ω
=

ω∫ ,  where 5 2
1 1.m 1 M 1f ( ) M ( ) (i 0) Rω = ω − ρλ = ⋅ ⋅ω  (12) 

Discrete values of function f(ω1), that is being used in numerical solving integral (12), 
are determined as difference between graph ordinate of reduced M1.m(ω1) motor charac-
teristic and graph of torque parabola transmitted by coupling with i = 0 (ω2 = 0). 

Acceleration of output shaft of the hydrodynamic coupling at the end of the first 
starting phase, i.e. at the beginning of the second starting phase, is: 

 
(s )

1 1

(s) 5 (s) 21
1.m 1 1 M 1(r)

m.1

d 1 [M ( ) (i 0) R ( ) ]
dt Iω =ω

ω
= ω = ω − ρλ = ⋅ ω , 

therefore, according to the equation (10), we obtain an acceleration of output shaft of the 
hydrodynamic coupling at the beginning of the second starting phase:  

 

(s )
1 1

2
(s )

1 1

(s) (r)2 1
1.m 1 2.0 2 m.1(r )0 2.0

5 (s) 2
M 1 2.0 2(r )

2.0

d d1 [M ( ) M ( 0) I ( ) ]
dt dtI

1 [ (i 0) R ( ) M ( 0)].
I

ω =ωω =
ω =ω

ω ω
= ω − ω = − =

= ρλ = ⋅ ω − ω =

 (13) 

Knowing an acceleration of output shaft of the hydrodynamic coupling at the begin-
ning of the second starting phase, we can obtain ω1

(s) in the first approximation, and then, 
also, the starting regime of the first starting phase. The iterative procedure is completed 
when the difference between  ω1

(s) and its previous approximation is negligibly low (for 
instance, less than 1%). 

Considering ω1 = ω1(ω2), we can also write: 1 1 2

2

d d d
dt d dt
ω ω ω

=
ω

, 

therefore, differential equation (10), which is used for calculating a starting regime of the 
second starting phase (t2), can be written in this form: 
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2 2

(r ) (r ) 1
2.0 m.p

2
2

1.m 1 2 2.0 2

                                            dt F( ) d ,
dI I
dwhere :                  F( )                 

M ( ( )) M ( )

= ω ⋅ ω ⎫
⎪ω ⎪+ ⎬ω ⎪ω =
⎪ω ω − ω ⎭

 (14) 

In the moment of obtaining a steady-state operating regime (dω1/dt = 0, dω2/dt = 0), 
when (R)

1 1ω = ω  and (R )
2 2ω = ω , function F(ω2) achieved infinite value, therefore, in 

numerical integration of differential equation (14), this equation integrates with negligible 
error from ω2=0 to (R)

2 20,99ω = ω : 

 
( R )
20,99

2 2 2
0

t F( ) d
ω

= ω ⋅ ω∫ . (14') 

To obtain subintegral function F (ω2), it is necessary to determine a graph of function ω1(ω2), 
and after that, a graph of functions dω1/dω2 = f1(ω2) and ϕ (ω2) = M1.m(ω1(ω2)) − M2.0 (ω2). 

Graph of function ω1(ω2) is interpolated according to the intersection points of torque 
graph M(ω1,ω2) in the universal characteristic of hydrodynamic coupling, and graph of 
load torque characteristics of output shaft of the hydrodynamic coupling. 

 (r ) 2
1 2 2.0 2 2.0

dM( , ) M ( ) I
dt
ω

ω ω = ω + , (15) 

Acceleration of output shaft of the hydrodynamic coupling at the end of the first 
starting phase – at the beginning of the second starting phase, is known ( (s )

1 1
2(d / dt)

ω =ω
ω ); 

therefore in the first iterative step for solving the second starting phase, it can be assumed 
that a linear changing of dω2/dt, and equation (15) becomes: 

 
(s )

1 1

(R)
(r) 2 2 2

1 2 2.0 2 2.0 (R )
2

dM( , ) M ( ) I
dt ω =ω

ω ω − ω⎛ ⎞ω ω = ω + ⎜ ⎟ ω⎝ ⎠
, (15’) 

Drawing, in the universal characteristic of the coupling, a graph of function described 
by the right side of equation (15') (curve 1 in Fig. 3a), according to the intersection points 
of this graphic and graphs of torque characteristics M(ω1, ω2), the graphic of  function 
ω1(ω2) can also be interpolated (curve 1 in Fig. 3b). According to graph ω1(ω2), it is easy 
to interpolate also graph f1(ω2)=dω1/dω2 (f1(ω2)=tgα(ω2) – angle (ω2) of the inclination of 
a straight line which contacts graph (ω2), for variable ω2 measured toward abscissa). 

Graph of function ω1 

2 1.m 2 2.0 2( ) M ( ) M ( )ϕ ω = ω − ω , 1.m 2 1.m 1 2(M ( ) M ( ( )))ω = ω ω , 

which is in the denominator of subintegral function F(ω2), can be easily interpolated ac-
cording to the serial, previously defined, differences between ordinates of graphs 
M1.m(ω2) and M2.0(ω2), shown in Fig. 3a. 

Considering all that has been defined so far, it is not difficult to do the interpolation of 
subintegral function F(ω2)and, subsequently, to solve numerical integral (14'). In this way, 
the first approximation of starting regime of the second starting phase (t2) is obtained.   
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By solving differential equation (14), for different discrete values of ω2, from interval 
(R )

2 2(0,0,99 )ω ∈ ω , 

 
2

2 2 2
0

t F( ) d
ω

= ω ⋅ ω∫ ,   for  (R )
2 2(0,0,99 )ω ∈ ω , (16) 

therefore, knowing functional relation ω1=ω1(ω2), graphs ω2(t) and ω1(t) can be interpo-
lated, and accordingly, also:  

 1
1

d (t)(t)
dt

ω
ψ = ,   2

2
d (t)(t)

dt
ω

ψ = , (17) 

and 

 1.m 2 2.0 2(t) M ( (t)) M ( (t))ϕ = ω − ω , (18) 

According to equation (10), written in the form: 

 (r) (r )1 2
1.m 2.0 m.p 2.0

d dM M I I
dt dt
ω ω

− = + , 

It is obtained that at every moment (t) of the second starting phase the next equation must 
be satisfied:  

 (r) (r )
m.p 1 2.0 2

                     (t) (t)

          (t) I (t) I (t)              

ϕ = ψ ⎫⎪
⎬ψ = ⋅ψ + ⋅ψ ⎪⎭

, (19) 

To verify validity of functional relation ω1(ω2), i.e. validity of assumed functional graph 
(r)

2.0 2 2.0 2M ( ) I d / dtω + ω  (curve 1 in Fig. 3a), functional difference ϕ(t) − ψ(t) is determined, and 
based on that difference also ϕ(ω2) − ψ(ω2). Value of functional difference between ϕ(ω2) and 
ψ(ω2) shows us a method of correction for functional graph (r)

2.0 2 2.0 2M ( ) I d / dtω + ω  (curve 1 
in Fig. 3a). When is ϕ(ω2) > ψ(ω2), the curve 1 has to be further from curve M2.0(ω2), and when 
is ϕ(ω2) < ψ(ω2), the curve 1 has to be closer to curve M2.0(ω2). 

The correction of functional graph (r)
2.0 2 2.0 2M ( ) I d / dtω + ω  is followed by the calcula-

tion of the second approximation. For angular velocities of hydrodynamic coupling that 
satisfy inequation (2), the universal characteristic of the coupling M(ω1,ω2) may be de-
fined also using analytic functions. This enables creating a program for solving this prob-
lem by personal computer. 

CONCLUSION 

In this paper an iterative procedure for calculation a starting regime of power trans-
mission with a hydrodynamic coupling and a driving motor, with a priori accepted accu-
racy, is presented. The number of iterative steps depends on required result accuracy. 

If functional dependence ω1(ω2) is determined according to the “quasi-static” model, 
the calculation could be considerably simplified, and it will lose its iterative nature. On 
the other hand, in addition to reduced accuracy of the calculation, it is more important that 
in this case miscalculation could not be estimated. 
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PRORAČUN VREMENA ZALETA PRENOSNIKA SNAGE SA 
HIDRODINAMIČKOM SPOJNICOM I POGONSKIM 

ELEKTROMOTOROM  

Božidar Bogdanović, Živan Spasić, Jasmina Bogdanović-Jovanović 

U radu je izložen grafo-analitički postupak proračuna vremena zaleta prenosnika snage sa 
hidrodinamičkom spojnicom i pogonskim elektromotorom. Izložen iterativni postupak rešavanja 
zadatka omogućava da se vreme zaleta sistema može odrediti sa unapred usvojenom tačnošću. 
Broj iterativnih koraka proračuna zavisi, naravno, od usvojene tačnosti proračuna.. 

Ključne reči: hidrodinamička spojnica, elektromotor, vreme zaleta. 
 


