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Abstract. Electrohydraulic servovalves are very often used as commanding devices in the 
hydraulic systems. For their control many algorithms are developed. This paper gives a 
control algorithm based upon digital sliding regime. The properties of the proposed 
algorithm are compared to those of the linear PD controller by computer simulation. 
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1. INTRODUCTION  

The electrohydraulic servosystems, despite of having a high degree of nonlinearity in 
their operation, are very often used as commanding devices in the hydraulic systems. The 
control of these and many other processes implies numerous obstacles even though it is 
possible to reduce the degree of the servovalve model to the third order model without 
losing nonlinearity. 

A frequent method for using linear controllers is linearization of the system around a 
given working point. The controller is then designed for optimal conditions around the 
same working point. In order to increase the range of usage, fast response and accuracy it 
is necessary to use nonlinear controllers. There is a great number of diverse nonlinear 
controllers which are used for controlling the piston position in the servovalve but not for 
pressure control. 

This paper shows a nonlinear control algorithm designed by means of the theory of the 
variable structure control system and it is based upon digital sliding regime. The motive 
for doing this paper is an attempt to apply the digital sliding regime to the needs of pres-
sure control by means of a servovalve in order to confirm the superiority of the presented 
algorithm with respect to the classical solutions. The basic advantages of the sliding re-
gime, known to a small number of experts in the field of automatic control, include sys-
tem invariability and robustness, the operation with the systems whose parameters need 
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not to be accurately known (only the interval of their usage) and the system state motion 
which does not depend on the parameters of the model but on those of control only. 

2. MATHEMATICAL MODEL  

The system for pressure control by means of the hydraulic servovalve is described in 
Fig. 1 in the form of a block diagram: 

 
Fig. 1. Block Diagram for Pressure Control 

Outlet pressure pout of the system is subtracted from given pref, thereby obtaining in-
put into the controller. On the basis of the output from controller u the position of piston 
xs is controlled in the electrohydraulic servovalve on the basis of which the oil flow 
which nonlinearly depends on the pressure drop is regulated.  

Oil flow is calculated as: 

 sqpll xkQV ==�  (1) 

Equation (1) is nonlinear since it comprises coefficient kqp which depends on pressure 
drop ∆p that is:  

 outs ppp −=∆ , (2) 

 pkk qqp ∆= . (3) 

In equations (2) and (3) ps represents feed pressure while kq combines the constant 
which comprises valve outlet geometry, discharge coefficient and properties of oil as a 
working medium. 

In order to obtain outlet pressure of oil pout, pressure Ql, is integralled thereby giving 
parameter Vl, multiplied by factor β / Vtot, where β is elasticity modulus while Vtot is total 
oil volume in the hydraulic system. 

Since the equations describing the dynamics of the pressure control system are nonlin-
ear, it is necessary to do linearization by some of the techniques in order to obtain a more 
adequate model for regulator design. The very process of linearization is explained in 
[10] by which a linear third-order model is obtained introducing a set of nonlinear trans-
formations as well as a new coordinate of state z: 

 outs ppz −−= 2  (4) 

Linear model with limited input is given by state equation (5): 
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where xlin oil flow in the valve, T = 0.0015s time constant of the linear block, As = 0.0002m2 
servovalve piston area, G = 0.0615 total amplifying of the linear block, kq = 0.0745m2s-1bar-0.5 
conversion factor of the flow, β = 10350 elasticity modulus, Vtot = 0.0001m3 total oil volume. 
Feeding pressure is of value ps = 138bars, maximal servovalve piston travel xsmax = 0.003m 
and maximal flow in the valve is Qsmax = 1.7143 10-5m3s-1. 

With the linear system model in this form it is possible to design many different linear 
regulators including the control using digital sliding regime. 

3. CONTROL ALGORITHM OF THE DIGITAL SLIDING REGIME 

Regarding the complexity of the problem of pressure control by means of a hydraulic 
servovalve, due to the mathematical model nonlinearity, the solution should be looked for 
in the domain of nonlinear control algorithms. It is well known that there is an infinite 
number of nonlinear control laws. It is upon the designer to make the right choice for the 
sake of achieving special characteristics of the designed system. The system is required 
not only to do good control under normal conditions but also to be robust to the parame-
ters' changes and the effect of the external disturbances. Having all this in view, the inter-
est lies in the variable structure systems with sliding working regimes.  

The dominant problem in the practical realization of the variable structure control 
system with sliding working regime is that of so-called non-modeled dynamics which 
does not usually represent a serious problem in the systems with linear control laws of the 
PID type. The non-modeled dynamics which exists in almost every practical application, 
due to small transport or inertia delays in the object, actuator or information channel 
which are either missed to be calculated in the model or neglected in the design, causes 
the phenomenon of chattering of the control signal which leads to the loss of the system 
motion invariantness. The chattering in the electromechanic system gives rise to unpleas-
ant sound signals (rumbling) and to the fast wear of the mechanical parts which should not 
be tolerated. 

Many papers are dealing with the problem of chattering reduction or elimination. This 
problem has not been studied enough and fully solved. A number of published control 
algorithms claim to be chattering-free but under certain conditions. In this paper the con-
trol algorithm which also belongs to the group of chattering-free algorithms will be used. 

In the general case, for multivariable control system represented by vector state equa-
tion: 

 )(),(),( ttbt uxxAx +=� , (6) 

where x- n-dimensional while u -m-dimensional vectors, m discrete functions represented 
in form s(x) are introduced and variable structure control: 
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So that in the reaching regime for finite time, state s(x)=0 should be realized. 
In this way, the system design is reduced to two steps: 
1. Choice of discrete surface s(x)=0 with desired dynamics of the system motion 

which is of lower order than the order of the given object dynamics. 
2. Design of variable structure control u(x,t) so that any state x achieves the discrete 

plane for finite time and that continuous sliding regime is realized on it. 
In this way, the variable structure control system reaches asymptotic stability. 
The response of such a system, Fig. 2a, consists of three phases, namely: 
•  achievement, 
•  sliding, and, 
•  stable state. 
If the system is now taken in a time discrete form which is needed for the control pa-

rameters design, 

 )()()1( kukk bAxx +=+ , (8) 

where x - n-dimensional vector, u - scalar, A – matrix and b – vector of respective dimen-
sions. When the variable structure digital control system is applied, the system response 
can be divided into three phases. However, two types of the system trajectories in the 
sliding regime emerge here, Fig. 2b. 

  
Fig. 2. Variable Structure System Trajectories: a) Analog, b) Digital 

Trajectory A is considered as an ideal one. In order to obtain it, the system state 
should get to the sliding hyperplane exactly at the causation period which rarely happens 
in practice. Trajectory B represents the system motion for the real case. The system state 
describes a zigzag motion about the sliding plane [14]. To provide stability and quality 
guarantee, such motion must fulfill the following requirements: 

a)  From any initial state, the system state must move towards the sliding straight line 
and it must be cut for finite time, 

b)  When the trajectory cuts the sliding hyperplane for the first time, it must cut it 
again every next period of causation thereby giving resulting zigzag motion, and, 
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c)  Amplitude of the stated motion must not grow in time, that is, it must remain 
within the range defined in advance. 

The motion fulfilling the conditions b) and c) is called quasi-sliding regime. This term 
was first introduced in paper [15]. If the motion fulfills all the three conditions, the system 
is stable. Here we cannot speak about global asymptotic stability or absolute stability 
since oscillations of chaotic type will emerge in the vicinity of the zero balance state. It 
should be said that, in variable structure analog systems in which there is a delay in the 
formation of control laws, the quasi-sliding regime and similar motion in the vicinity of 
the balance state also emerge. Therefore, under the real conditions, due to the presence of 
non-ideality, asymptotic stability cannot be expected. From this standpoint, it is interest-
ing to study the system's behavior in the vicinity of the balance state in order to determine 
the motion range. 

In this paper the variable structure digital control algorithm published by domestic 
authors [12] is applied. The characteristic of this algorithm is to reach the sliding hyper-
plane for finite time with smooth decline. The control law comprises two components: 

• nonlinear,  
whose task is to bring the system state into the close vicinity of the sliding plane, and, 

• linear 
by which the sliding plane is reached in an interval of choice and it provides for fur-
ther existence of sliding. 

In order to explain the chosen variable structure digital control algorithm and to stress 
its advantages, it is best to start from the linear system described by equation (6) for 
which control is given in the form, 
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Equivalent discrete model of system (6) is given in the form: 

 ),()()()()( kTuTkTTkT δδ +=δ bxAx  (10a) 
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Since pair (A,b) is completely controllable while Aδ(T) and bδ(T) are analytical func-
tions of T, then pair (Aδ(T), bδ(T)) is likewise completely controllable. If the discrete 
function is given by equation, 

 xc )(Ts δ= , (11) 

where cδ(T) ∈ R1x n, it is necessary, in order to reach sliding working regime, to provide s = 0.  

Assumption 

 .1)()( =δδ TT bc  (12) 
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This assumption ensures that relative degree of parameter s, if taken as output, with 
respect to the control signal, should be one. This is the usual condition of variable struc-
ture control system. 

The next relation defines achievement law (further (kT) is written in short (k)): 

 )),(),(()( kksks XΦ−=δ  (13a) 

where 
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Where, by definition )0()0(ˆ xx = . 
Substituting (10a) in (13b) and putting their result in (12) and solving it for u(k), the 

control signal is obtained: 

 )).(),(()()()()( kkskTTku XxAc Φ−−= δδ  (14) 

Function Φ is chosen in such a way that control law (14) has two regimes, namely, nonlin-
ear and linear. The linear regime works in the vicinity and in the very sliding plane. The 
sliding plane vicinity is denoted as S(T) and defined as 

 },ˆ)(:{)(
1211

2 xxxcXS η+η+ε<=∈= δ TTTTsRT n  .0,,0 21 ≥ηη>ε  (15) 

In equation (15) ∑ =
= n

i i11
xx . 

In order to obtain the needed control parameters, system (10) with control (14) is 
transformed into regular form through the following coordinates' transformation: 
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where [18] 
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and ai (T) are coefficients of characteristic polynomial ))(det( Tn δ−δ AI , 
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Assuming that pair (Aδ(T),bδ(T)) is completely controllable, matrix P1(T) P2(T) is regular. 
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By solving equation (16d) matrix cδ(T) is obtained: 

 )(P]1)([c)(c 1
11 TTT −

δ = , (17) 

The needed parameters for calculating matrix cδ(T) are obtained by means of the fol-
lowing equations: 
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Function Φ(s,X) is calculated as: 
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+σ=Φ=Φ , (20) 

where ρ and σ are real numbers such that 0 ≤ qT < 1 and σ >0. 

4. SIMULATION RESULTS 

As has already been said in Introduction, the pressure regulation by means of the hy-
draulic servovalve represents a big problem which can be solved by using adequate con-
trol. The control used here is designed by using the theory of the variable structure control 
system, on the basis of the digital sliding regime, as briefly explained in Section 3. 

Control parameters (14) for discrete model (10), obtained at discretization of 
T = 0.0015s, calculated by equations (17,18,19 and 20) are: 

 [ ]009E2528.20034984.0024296.0)(c −=δ T , 

 [ ]001737.02383.1)()(c =δδ TT A ,  

The results of the control obtained by using digital control are compared with those 
when the linear PID regulator is used, of the following amplifications KP = 0.00005, 
KI = 0.00005 and KD = 0.0000005. 

Fig. 3 shows the results of the simulations while tracking the bouncing signal; it can be 
seen that pressure regulation by digital control is better since it provides for fast response 
while with the use of the PID regulator fast response can also be obtained but it is coupled 
with over-jumps which are of referential value. 
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Fig. 3. Simulation Results: a) Tracking Bouncing Signal of Referential Pressure, b) Error 

5. CONCLUSION 

This paper presents a control algorithm based on the digital sliding regime designed 
by means of the theory of the variable structure control system. The characteristics of the 
proposed algorithm are compared with those of the linear PID controller by computer 
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simulation and the values of the given control are displayed. It is shown that by fast re-
sponse of the pressure regulation by digital control no over-jumps of referential value 
emerge while this can be avoided with the PID regulator only by reducing proportional 
strengthening, that is, by reducing the response velocity. 
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UPRAVLJANJE PRITISKOM HIDRAULIČNIM 
NELINEARNIM SERVOVENTILOM  

Vladislav Blagojević, Miodrag Stojiljković 

Elektrohidraulični servoventili se veoma često koriste kao komandni uređaji u hidrauličnim 
sistemima. Za njihovo upravljanje razvijeno je dosta algoritama. U ovom radu predstavljen je 
algoritam upravljanja baziran na digitalnom kliznom režimu. Osobine predloženog algoritma 
upoređene su sa linearnim PID kontrolerom simulacijom na računaru. 

Ključne reči:  Hidraulični servoventil, sistem upravljanja promenljive strukture, digitalni klizni režim 


