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Abstract. The aim of the work presented here is to develop an efficient method for the 
minimum weight design of thin-walled composite structures. A multilevel approach is 
used for optimization of the structures modeled with layered shell finite elements 
subjected to stress, system stability and initial failure constraints. The multilevel 
optimization permits a large problem to be broken down into a number of smaller ones, 
at different levels according to the type of problem being solved. The optimization 
method presented here is based on combining optimality criterion (OC) and 
mathematical programming (MP) algorithms. The finite element analysis (FEA) is used 
to compute internal forces at the system level. The local stress and local initial failure 
load in each independent element are defined as component constraints. The use of this 
MP algorithm is essential to the multilevel approach and local level since it can handle 
the highly nonlinear component problem, such as local buckling or special initial 
failure constraints at the mechanically fastened joints. The multilevel algorithm is 
applied to the minimum-weight design of complex aircraft structures subject to 
multiple constraints such as aircraft parachute composite beam. 
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1. INTRODUCTION  

One of the major tasks in the design of aircraft wing structures is the sizing of the 
structural members to obtain the desired strength, weight, and stiffness characteristics. 
Optimization algorithms have been coupled with structural analysis programs for use in 
this sizing process. Most of the difficulties associated with the large structural design are 
solution convergence and computer resources requirements. Structural optimization 
problems traditionally have been solved by using either the mathematical programming 
(MP) or the optimality criteria (OC) approach. More recently, the works in Refs [1-3,14] 
have illustrated the uniformity of the methods. Nevertheless, each approach offers certain 
advantages and disadvantages. The MP methods are extremely useful in defining the de-
sign problem in proper mathematical terms. When the design variables are few then these 
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methods can be used quite effectively for optimization. However, in the presence of a 
large number of variables these methods are very slow. The rate of convergence for OC 
methods is initially very fast, step size determination is critically closer to the local opti-
mum where the number of active constraints' increases and the computations of Lagrange 
multipliers become more complex. Power and weakness of the various MP methods are 
given in Ref. [8]. Ideally, a methodology that exploits the strength of both approaches 
could be employed in a practical system. The object of the present research effort is to 
develop such a design method that can efficiently optimize large structures exploiting 
strengths (power) of the MP and OC methods. The motivation of this study is to come up 
with a multilevel optimization method using optimality criteria and mathematical pro-
gramming techniques. The multilevel optimization permits a large problem to be broken 
down into a number of smaller ones, at different levels according to the type of problem 
being solved. This approach breaks the primary problem statement into a system level 
design problem and a set of uncoupled component level problems. Results are obtained 
by iteration between the system and component level problems. The decomposition of a 
complex optimization problem into a multilevel hierarchy of simpler problems often has 
computational advantages. It makes the whole problem more tractable, especially for the 
large engineering structures, because the number of design variables and constraints are 
so great that the optimization becomes both intractable and costly. The nature of an air-
craft structure makes multilevel optimization highly practical, not only in terms of reduc-
ing the computing cost but also because the individual tasks in the traditional design proc-
ess are preserved. The suitability of the multilevel optimization in a more complex design 
problem which is tested on a structure representative of the wing box in composite mate-
rial, with buckling limitations in each panel and another problem in which reliability re-
quirements are also included. The multilevel approach for optimization of the composite 
structures subject to stress, displacement, buckling and local failure constraints is developed.  

2. FORMULATION OF OPTIMIZATION PROBLEM 

The general structural optimization problem of the layered composite structures mod-
eled by finite elements can be stated as follows:  

Find the vector of design variables x so that 

 minxlW i

n

1i
ii ⇒ρ=∑

=

 (2.1) 

subject to behavior and side constraints 

 m,...,1j0CCG jjj =≥−=  (2.2) 

where: W − is structural weight of structure  
xi − is design variable assigned to element i 
li − is a geometrical parameter so that product lixi is the volume of element i 
ρI − is mass density 
Gj − is constraint j 

jC  − is the limiting value of constraint j 
n − is total number of elements 
m −is total number of constraints. 
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The constraints imposed on the structure, defined by equation (2.2), may have the 
global and local character. The global constraints will be defined as system constraints. 
The system constraints imposed on the structure may include the maximum allowable 
stress in each element, the displacement limits at one or more locations, system stability, 
reactive forces, dynamic stiffness, divergence, flutter, etc. In addition to these there would 
be limitations on the minimum and maximum sizes of the elements. 

In addition to system constraints there are local constraints. These include various 
buckling loads, various failure types in composite structures, etc. 

The inclusion of all these constraints in optimization process to large-scale structures 
is inefficient regarding the computational aspect. However, to develop an efficient algo-
rithm that effectively handles all types of constraints would be impractical and generally 
unnecessary. In the case of most structures it is likely that one can predict the type of con-
straint that will be the most active at the optimum and use the algorithm based on that 
constraint. The multilevel optimization approach may be very efficient for optimizing 
large-scale structural systems because it breaks the primary problem statement into a sys-
tem level design problem and a set of uncoupled component level problems. Results are 
obtained by iterating between the system and local level problems. The decomposition of 
a complex optimization problem into a multilevel hierarchy of simpler problems often has 
computational advantages. It makes the whole problem more tractable, especially for the 
large aircraft structures. The nature of an aircraft structure makes multilevel optimization 
highly practical, not only in terms of reducing the computing cost but also because the 
individual tasks in the traditional design process are then preserved. 

3. THEORY OF MULTILEVEL OPTIMIZATION 

Let D and d represent sets of system component design variables, respectively. Then 
the problem can be stated as: 

Find vectors D and d so that 
 min)D(W ⇒  (3.1) 
subject to 
 0)d,D(Gq ≥ , Qq∈  (3.2) 
and 
 0)D,d(g jlj ≥ , Mj;Ll ∈∈  (3.3) 

Gq (D,d) represents constraints that are strongly dependent on D vector and they are 
implicit functions except for the side constraints. glj(dj ,D) represent constraints that are 
primarily dependent on j component variables dj, and they are either explicit or implicit 
functions of dj, depending on the type of constraints and the type of local failure analysis. 
Symbols Q and L denote the set of system and component level constraints respectively, 
M denotes the number of components and dT =[ d1

T, d2
T,..., dM

T] . 
The system design variables can be expressed symbolically as explicit functions of the 

detailed design variables, that is 

 M,...,1j)d(D jj =Ψ=  (3.4) 
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For each component the number of detailed design variables is larger than that of the 
corresponding system design variables. 

Therefore, casting the problem entirely at the system level by expressing Dj as func-
tions of dj and solving it by using mathematical programming methods are both impracti-
cal tasks for large-scale problems. The multilevel approach presented here is decomposed 
into two levels of design modification; one with the constraints that are strongly depend-
ent on system design D and the other with the constraints that are primarily dependent on 
local design variables dj. Then system and local analyses and optimizations are carried 
out separately and tied together by an iterative scheme going from one level of design 
modification to the other and visa-versa seeking an overall optimum design. In Fig. 1 the 
simplified multilevel optimization process is shown. 

 
Fig. 1. Multilevel approach in structural optimization 

The structural optimization problem given by Eqs. (3.1)−(3.3) is recast as a multilevel 
optimization problem following form: 



 Minimum Weight Design of Thin-Walled Composite Structures 21 

i.) System level: 
 Find vector D (3.5)  

 so that min)D(W ⇒  (3.6) 

 and Qq;0*)d,D(Gq ∈≥  (3.7) 

where d* implies that the parameters strongly dependent on detailed design variables d 
(i.e., failure loads and local buckling) do not change during a system level design modi-
fication stage. 

ii.) Component level: 
 Find vectors  dj (3.8)  

 so that mj(dj) ⇒ min  (3.9) 

 and Ll;0*)D,d(g jlj ∈≥  (3.10) 

where D* implies that the parameters strongly dependent on the system level design vari-
ables are kept constant during each component design modification stage. 

4. SYSTEM LEVEL OPTIMIZATION  

An efficient optimality criterion method is used for the system level optimization of 
large-scale complex structures subjected to constrains which are included at the system 
level. The optimality criteria approach will be used for optimizing the structures with 
system level constraints. The optimality criteria methods for structural optimization involve: 

1. derivation of set of necessary conditions that must be satisfied at the optimum design, and, 
2. the development of an iterative redesign procedure that drives the initial trial design 

toward a design which satisfies the previously established set of necessary conditions. 
In order to establish the optimality conditions for the problem defined by (3.5)−(3.7) 

we need the associated Lagrangian which is given by the expression 

 ∑ ∑
= =

λ+=λ
N

1i

Q

1j
jj

i

i G
D
w

),D(L  (4.0) 

where λj's are the Lagrange multipliers. The Kuhn-Tucker optimality conditions are 
now obtained, in part, by differentiating the Lagrangian and the complete set is given by 

 D* is possible (4.1) 
 Qq,00*)D(Gqq ∈≥λ=λ  (4.2) 

 ∑
∈

=∇λ+∇
Qq

qq 0*)D(G*)D(W  (4.3) 

If the problem is assumed to be convex then these conditions are necessary and suffi-
cient for the solution of vector D*,λ* to represent a global optimizing point; otherwise 
they define a local optimum. The optimum structure must satisfy Eqs. (4.1)−(4.3). These 
are the Kuhn-Tucker conditions or the optimality conditions. Equation (4.3) is the ratio of 
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the weighted sum of the gradient of the constraints to the gradient of the objective func-
tion, which must be equal for all elements in an optimum design. Equations (4.1) and 
(4.2) ensure satisfaction of the constraint equations. Constraints Gq in equation (3.7) may 
be displacement limits at the different node points in a structure, the relative nodal dis-
placements corresponding to maximum allowable stress in each element, system stability, 
frequency constraints, flutter requirements, various failure criteria in layered composite 
structures such as the Tsai-Wu criterion. 

The real optimum structure must satisfy conditions (4.2)−(4.3). To develop a compu-
tational algorithm that handles all these constraints efficiently would be difficult and gen-
erally unnecessary. In practical design problem what may be required is a design which is 
near minimum weight and not a design that exactly satisfies the mathematical optimality 
criteria. This can generally be achieved by designing the structure based on one or two of 
the must important constraints, and checking the design for the other constraints. 

Problem optimization defined by Eqs (3.5)−(3.7) or (2.1)−(2.2) involves: large num-
bers of design variables, large numbers of inequality constraints and many inequality con-
straints that are computationally burdensome implicit functions of the design variables. 
These obstacles have been overcome by replacing the basic problem statement (3.5)−(3.7) 
with a sequence of relatively small, explicit, approximate problems that preserve the es-
sential features of the original design optimization problem. This has been accomplished 
through the coordinated use of approximation concepts. The most important feature of the 
approximation concepts approach lies in the construction of simple explicit expressions 
for the set of constraints retained during each stage. This is achieved by linearization of 
these constraints with respect to linked reciprocal design variables. The linearized be-
havior constraints (3.7) are obtained by using the first order Taylor series expansion as: 

 ∑
=

=−=
n

1i
iiqq Q,...,1i;DC1*)d,D(G  (4.4) 

where Ciq is the partial derivative of q-th constraint for i-th design variable, a Q is the 
total number of constraints. Equation (4.4) represents the current linearized approxima-
tions of the retained behavior constraints. Using (4.4) the retained behavior constraints 
system level optimization problem (3.5)−(3.7) can be expressed as: 

Find vector D so that 

 ∑
=

⇒=
N

1i i

i min
D
w)D(W  (4.5) 

subject to constraints 

 Qq;DC1)D(G i

n

1i
ijq ∈−= ∑

=

 (4.6) 

and 
 U

ii
L
i DDD ≤≤  (4.7) 

wj are positive fixed constants corresponding to the weight of the set of elements in the j-
th linking group when Dj=1. The set of independent design variables after linking is de-
noted by N and equation (4.6) represents the linear approximations of the behavior con-
straints. Di

L and Di
U respectively denote lower and upper limits on the independent design 

variables. 
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In developing the optimality conditions standard approach is to form a Lagrangian: 

 ∑ ∑ ∑
= ∈ =

−λ−=λ
N

1i Qq
i

n

1i
ijj

i

i )DC1(
D
w

),D(L  (4.8) 

where λq are the undetermined Lagrangian multipliers. Approximation problem (4.5)−(4.7) 
is convex problem and therefore the Kuhn-Tucker conditions are necessary that solutions 
D∗, λ∗ represent global minimum. The Conventional optimality criteria methods for 
structural optimization involve: (i) the derivation of a set of necessary conditions that 
must be satisfied as the optimum design and (ii) the development of an iterative redesign 
procedure that drives the initial trial design toward a design which satisfies the previously 
established set of necessary conditions. Each approximate primal problem of the form 
given by equations (4.5)−(4.7) can be transformed to correspond to an explicit dual prob-
lem. Detail solution methods and optimization algorithms are given in Refs [8,9]. 

4.1 Definition of Strength Constraints in Layered Composites  

For analysis and optimization fibrous layered composite structures, modeled by 
orthotropic membrane finite elements, various failure criteria can be used. The Tsai- Wu 
criterion is frequently used for failure analysis of orthotropic layers in composite stack. 
This criterion can be expressed as:  
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where σ1, σ2, τ12 are the components of stress tensor σ; F1 ,F2 and F12 are the stresses of 
failure in uniaxial tension, compression and shear, respectively and Tt is Tsai's number. 
By using eqns (4.6) and (4.9) the linearized approximations of Tsai-Hill criterion can be 
written as: 
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Similarly, the linearized constraints such as displacement, stability, frequency or other 
system constraints can be defined. 
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5. LOCAL LEVEL OPTIMIZATION 

Local level optimization process can include various types of failure modes in lami-
nates or local buckling constrains. This optimization problem is solved by algorithms 
based on nonlinear mathematical programming methods. Classical optimization problem 
in local level are mechanically fastened joints in composites. Initial failure arises on a 
characteristic curve, as shown in Fig. 2.  
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Fig. 2. Description of the Characteristic Curve with FE Mesh 

The characteristic curve with finite element mesh, Fig. 2, is specified by the expression:  
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π
−Φ−++=Φ  (5.1) 

where Rt and Rc are referred to as the characteristic lengths for tension and compression. 
In order to determine the load at which a mechanical fastened joint fails and the mode of 
failure, the conditions for failure must be established. In this paper the joint is taken to 
have failed when certain combined stresses have exceeded a prescribed limit in any of the 
plies along the chosen characteristic curve. The combined stress limit is evaluated using 
the failure criterion proposed by Yamada- Sun in form [11] 

 1)
F

()
F
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1

1 ≤
τ

+
σ  (5.2) 

where σ1 and τ12 are the longitudinal and shear stresses in a ply, respectively (1 and 2 
being the directions parallel and normal to the fibers in the ply). F12 is the rail shear 
strength of a symmetric cross ply laminate [0o/90o]s. F1 is either the longitudinal tensile 
strength or the longitudinal compressive strength of a single ply. 

This criterion is based on the assumption that just prior to failure of the laminate, 
every ply has failed due to cracks along the fibers. It is very important to say that local 
constraints such as expressed by Eq. (5.2) or similar, can be included in the optimization 
process as direct formulae using the Fortran lingue notation in programme OPTIS [12]. 
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The direct manner for defining very nonlinear constrains by using the direct Fortran de-
scription is very efficient in practical optimization of composite or metal aircraft struc-
ture. Final dimensions are obtained at local optimization. Optimization algorithms are 
based on Nonlinear Mathematical programming methods such as: SUMT, CONMIN, 
method inscribed hypersphers [6], etc. 

6. NUMERICAL EXAMPLES 

To illustrate the application and versatile multilevel approach to the weight structural 
optimizations composite structure subjected static loads are considered. 

6.1 Optimum Design of Layered Composite Panel 

As standard model for the weight minimization fibrous layered composite panel is 
considered. Ply's orientations for optimization of panel are [0o/ +45o/ −45o/ 90o]. This 
example involves three distinctive loading conditions, Table 1. Material properties of the 
panel are given in Ref. [10]. The weight minimization carried out for Hill-Tsai, buckling 
and lower limits in membrane stiffness criteria. In this case the buckling constraints at 
local level are considered. The basic analysis concepts for buckling constraints are pre-
sented in Ref. [6,15] for a simply supported equivalent homogeneous orthotropic plate 
with planform dimension a,b subject in plane loading conditions. Fig. 3 shows geometry 
and loads of the panel.  

Lower limits on membrane stiffness are: 
A11(min) = 0.75 × 106 ; A22(min) = 0.5 × 106 ; A66(min) = 0.5 x 106 
Material is graphite/epoxy: HT-S/4617: 

E11 = 20 × 106; E22 = 1.3 × 106; G12 = 0.65 × 106; ν12 = 0.304, tlayer = 0.05 
F1

t = 165 × 103; F2
t = 8 × 103; F12 = 16 × 103; F1

c = 11 5× 103; F2
c = 30 × 103. 

 
Fig. 3. Model of Layered Composite Panel 
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The panel is small one optimization problem. It can be consider at one or two levels, 
with different or the same optimization algorithms. The results obtained by multilevel 
optimization procedure are the same as those reported in Ref. [10] with respect to weight, 
thickness distribution and critical constraints 

Table 1. Loads of Composite Panel 

Load Conditions (k) Nxk Nyk Nxyk 
1 8000 0 4000 
2 0 8000 4000 
3 0 −4000 −2000 

Table 2: Optimization Results of the Layered Composite Panel 

Available Orientations Present Results Ref . [10]  
i Θi Initial 

thickness 
Final 

thickness' 
Final 

thickness' 
Number of Layers 

1     00 0.0714 0.0308 0.0304   7 
2 +450 0.0714 0.0885 0.0898 18 
3 −450 0.0714 0.0885 0.0898 18 
4   900 0.0714 0.0324 0.0304   6 

  0.2856 0.2402 0.2403  

Table 2 gives the final results obtained by the present method as well as the results re-
ported in Ref. [10].  

6.2 Optimization of Aircraft Parachute Composite Beam 

As very illustrative example for multilevel optimization procedure the fibrous com-
posite parachute beam considered. The structure of parachute beam shown in Fig. 4 ide-
alized with membrane finite elements. The elements consist of four layers in the 0o,90o 
and ±45o directions. The 0o fibers are parallel to the length of the beam. The parachute 
composite beam was subject to static loading conditions. The aircraft parachute compos-
ite beam shown in Fig. 4 used for system level optimization. 

 
Fig. 4. Parachute CFC-composite beam 
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Material of composite beam was graphite/epoxy NCHR 914/34%/132/ T300 with next 
mechanical properties: 

E11 = 126800 MPa             F11
t = 1362 MPa 

E22 = 9220 MPa             F11
c = 1333 MPa 

E33 = 9220 MPa             F22
t = 42 MPa 

G12 = 4620 MPa             F22
c = 172 MPa 

G23 = G13 = 720 MPa             F12 = 100 MPa  
ν11 = ν13 = ν23                   
t layer = 0.13 mm 

There are four mechanical fastened joints (holes) at the end of the parachute beam. 
The loads are introduced in these holes. The zone around each hole is considered as a 
substructure. This substructure has a characteristic curve, as defined in Fig. 2, which is 
modeled by very refined finite element mesh. The substructure (rectangular panel with 
central hole) is treated as an optimization model on the local level. The Yamada-Sun cri-
terion (5.2) around the characteristic curve (5.1) is used as constraints in local level opti-
mization. For this purpose, in the local level, the SUMT optimization algorithm is used. 
Optimization results of this substructure are thickness of layers: 

t1(0o)  = 2.08 mm  
t2(+45o)  = 0.78 mm 
t3 (−45o)  = 0.78 mm 
t4 (90o)  = 0.26 mm 

Failure load that is in this analysis obtained: Ff = 2297 daN. Failure was initiated in 
layer 0o, with extension type of mechanism of failure 75° ≤ Θf ≤ 90° . 

Failure loads that are experimentally obtained: (F1 = 2087 daN, F2 = 2296 daN and 
F3 = 2390 daN). 

Good agreement between numerical and experimental results is evident. Detail com-
parisons between numerical and experimental results are given in Ref. [13]. Difference 
between numerical and experimental results is maximum 5%. 

In this study optimization only the results of one substructure are presented. These re-
sults illustrate multilevel optimization process. 

7. CONCLUSION 

The obtained results demonstrate the practicality of multilevel optimization approach 
in the design of the complex aircraft structures. In this study two-level optimization algo-
rithm is applied; system- and component level. From the various investigated test prob-
lems it becomes clear that the choice of various optimization algorithms at each level 
plays a major role in the efficiency of the whole optimization process. The presented 
multilevel optimization approach uses optimality criteria's algorithm in conjunction with 
the Sequential Unconstrained Minimization Technique (SUMT). The optimality criteria's 
algorithms are used for system level optimization i.e. in case of weight minimization sub-
ject to global (system) constraints that can be displacements, system stability, frequencies, 
flutter, etc. The Nonlinear Mathematical Programming optimization algorithms are used 
for local (component) level optimization. Combining FEA, approximation concepts and 
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OC or dual algorithms has led to a very efficient method for the minimum weight sizing 
of large-scale structural systems. The proposed method is suitable for designing practical 
large scale structures with a large number of design variables. Finally, the minimum 
weight designs obtained for the aircraft parachute composite beam illustrate the applica-
tion of the multilevel approach to a relatively large structural system. 
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MINIMIZACIJA MASE TANKOZIDNIH  
KOMPOZITNIH STRUKTURA  

Stevan Maksimović 

Primarni cilj rada je uspostavljanje efikasnog metoda za minimizaciju mase tankozidnih 
kompozitnih struktura. Za optimizaciju strukture koja je modelirana konačnim elementima ljuski sa 
ograničenjima u pogledu napona, elastične stabilnosti i inicijalnih otkaza korišćen je višestepeni 
pristup. Višestepeni pristup optimizacije pretpostavlja da se veliki strukturalni sistem razbije u veći 
broj manjih strukturalnih sistema sa različitim nivoima u skladu sa tipom razmatranog problema. 
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Metod optimizacije prezentovan u radu zasnovan je na kombinaciji algoritama na bazi kriterijuma 
optimalnosti (OC) i nelinearnog matematičkog programiranja (MP). Analize na bazi metode 
konačnih elemenata (FEA) su korišćene za određivanje unutrašnjih sila na sistemskom nivou 
optimizacije. Lokalni naponi i opterećenja kod lokalnih inicijalnih otkaza u svakom nezavisnom 
elementu su definisana kao ograničenja na nivou strukturalne komponente. Korišćenje ovog MP 
algoritma na lokalnom nivou je suštinski za višestepeni pristup pošto je isti u stanju da opiše 
veoma nelinearna ograničenja takva kao što su lokalni gubici stabilnosti ili specifična ograničenja 
inicijalnih otkaza kod mehaničkih spojeva kod kompozitnih struktura. Višestepeni algoritam 
optimizacije je primenjen u radu na minimizaciju mase složene avionske strukture kao što je to 
greda kočionog padobrana napravljena od kompozitnih materijala zaslučaj većieg broja 
ograničenja. 

Ključne reči: Optimizacija, kompozitne strukture, višestepeni prisup, kriterijumi optimalnosti, ograničenja 
sa aspekta inicijalnog otkaza, ograničenja sa aspekta gubitka elastične stabilnosti. 

 


