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Abstract. Piezoelectric thin-walled structures, especially those with a notably higher 
membrane than bending stiffness, are susceptible to large transverse deflections. In the 
recent years numerical investigations conducted by different researchers have shown 
that the deflection amplitude, vibration frequency, output voltage and other values of 
interest can be significantly influenced by the assumption of large displacements and 
deformations of the structure. Therefore, the second part of the paper extends the 
formulation given in the first part into the geometrically nonlinear analysis, adopting 
the assumption of small strains but large displacements. The co-rotational approach is 
used. The linearized finite element equations for the geometrically nonlinear analysis 
of the piezoelectric continuum are developed and applied by means of the 9-node 
degenerated shell element described in the first part of the paper. 
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1. INTRODUCTION  

The potential benefits of active structures in various applications have attracted nu-
merous researchers to devote their work to this area, especially in the field of modeling. 
The main objectives of the modeling are often quite opposite – on the one hand, a model 
is supposed to offer a satisfying accuracy, but on the other hand, the required numerical 
effort should not be too great. Hence, a compromise is to be made. As a rule, the linear 
analysis is numerically less demanding than the nonlinear analysis. However, in the recent 
years numerical results from different researchers have shown that the deflection ampli-
tude, vibration frequency, output voltage and other values of interest can be significantly 
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influenced by the assumption of large displacements and deformations of the structure. 
Therefore, a number of different finite element formulations pertaining to the thin-walled 
active structures, which take into account geometrically and/or materially nonlinear ef-
fects, have been developed. A few of them will be mentioned here. 

Yi et al. [12] have developed a 20-node solid element for the nonlinear analysis of the 
laminated adaptive structures using the updated Lagrangian formulation. Simoes Moita et 
al. [10] have developed a 3-node triangular piezolaminated facet element based on the 
classical theory, i.e. the Kirchhoff kinematical assumption is considered, for the static 
geometrically nonlinear analysis. Utilizing a laminate theory of higher order, Carrera [5] 
has developed a plate element, with the zig-zag effect included and the interlaminar equi-
librium was fulfilled for resolving the transverse shear stresses. The geometrically nonlin-
ear analysis with the von-Kármán type nonlinearities and a quadratic distribution of the 
electric potential along the thickness were considered. Varelis and Saravanos [11] have 
described a mixed finite element formulation to capture nonlinear effects in the bucking analy-
sis of adaptive piezoelectric composite plates. Mesecke-Rischmann [8] has developed a 
mixed formulation of the shallow shell and the nonlinear material constitutive equations 
were included. It should be emphasized that it was not the authors' intention hereby to 
give an exhaustive survey of the nonlinear finite element formulations for adaptive struc-
tures, but only to represent the general basis of the development. 

Generally shaped structures made of piezoelectric composite laminates are arbitrarily 
curved thin-walled structures. Due to the considerably smaller thickness with respect to 
the in-plane dimensions these structures are susceptible to relatively large transverse de-
flections, still exhibiting small strains. This case qualifies for the geometrically nonlinear 
analysis and it will be a subject of our consideration in the sequel. 

2. GEOMETRICALLY NONLINEAR ANALYSIS IN THE FINITE ELEMENT FORMULATION 

Let's consider a motion of a piezoelectric active structure in the global Cartesian sys-
tem assuming that the structure undergoes large displacements, but small strains. The La-
grangian (material) formulation of the problem seems to be a natural and convenient 
choice, since we follow all particles of the structure in their motion. 

An incremental step-by-step approach represents a usual solution strategy in the 
nonlinear analysis. It assumes that the solution for the discrete time t is known, and seeks 
the solution at the discrete time t + ∆t, with a suitably chosen time increment ∆t. The so-
lution at each discrete time t, i.e. the structure configuration, has to be determined so as to 
satisfy the equilibrium condition: 

 }R{}F{ tt = , (1) 

where t{R} comprises all external (body, surface and point) generalized forces (mechani-
cal forces and electrical charges), as well as inertia and damping forces in the case of the 
dynamic analysis, and t{F} are the generalized internal forces, the mechanical part of 
which is given as: 
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where t[BL] is the linear strain-displacement matrix described in [6], t{σ} is the engineer-
ing (Cauchy) stress vector (Voigt notation used), and tV the structure domain, all of them 
with respect to the configuration at time t. 

It can be noticed that time is included in the calculation, regardless of the type of 
analysis, i.e. whether we deal with static or dynamic analysis. In the static analysis it is 
only a convenient auxiliary variable used to denote gradually increasing loads, and in the 
dynamic analysis it is an actual variable, since loads are defined as time functions. 

Since the geometrically nonlinear analysis recognizes that the structure takes different 
configurations during the loading, all the quantities of interest have to be defined with 
respect to certain configuration. It could be any of the determined configurations, starting 
from the initial one. It is quite logical to choose either the initial configuration or the last 
calculated configuration, i.e. at time t. The former choice is characteristic for the total 
Lagrangian formulation, and the latter is used within the updated Lagrangian configura-
tion. Both formulations yield the same result when used in their pure form, i.e. without 
any approximations. The choice between them depends on the material constitutive law 
and the numerical effectiveness. The updated formulation allows higher numerical effec-
tiveness when certain assumptions are included. There is another important advantage 
considering the updated formulation. It facilitates the introduction of anisotropic nonlin-
ear material properties in the analysis and allows in that manner the extension of the for-
mulation into the "full" (geometrically and materially) nonlinear analysis. Therefore, our 
attention will be focused on the updated Lagrangian formulation. 

3. STRAIN AND STRESS MEASURES IN UPDATED FORMULATION 

Observe the structure in Fig. 1. Assume that it is in a pre-stressed state and that it per-
forms a rigid-body motion from configuration 1 to configuration 2. Obviously, the strain 
and the stress state of the structure are not affected by the performed rigid-body motion. 
However, the tensors describing them with respect to the fixed global coordinate system 
(x, y, z), with respect to which the motion of the structure is described as well, have 
changed. This simple case represents the essence of the problem that the geometrically 
nonlinear analysis has to deal with. Two different approaches are possible in order to 
solve the problem. The first approach consists in the introduction of auxiliary strain and 
stress measures with special characteristics as will be seen in the sequel of the section. 
The second, co-rotational approach implies the introduction of an auxiliary (co-rotational) 
coordinate system fixed to the structure (such as (x′, y′, z′) in Fig. 1). The basic features 
of both approaches will be briefly described in the sequel. 

The actual (engineering) strain and stress measures in certain configuration are re-
ferred to the very same configuration. In order to calculate a new configuration it is 
needed to determine the actual stress field in it (see relations (1) and (2)), and within the 
frame of the nonlinear analysis the new configuration is still unknown. One of the possi-
ble ways to deal with the problem of continuously changing configuration is the 
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Fig. 1. Rigid-body motion of a structure from configuration 1 to configuration 2 

introduction of auxiliary strain and stress measures. The aim of their introduction is to 
express the internal virtual work performing the integration over the domain of a known 
structure configuration, and to be able to incrementally decompose the strains and the 
stresses in an effective manner. Various strain and stress measures can be used, but only 
the most frequently used will be briefly mentioned here, and those are the Green-La-
grange strain and the 2nd Piola-Kirchhoff stress, work conjugate with each other (the inte-
gral of their product over the domain of the reference configuration gives the internal 
virtual work).  

In the coordinate system (x1, x2, x3) with displacements (u1, u2, u3) the Green-Lagrange 
strain field is given in the following general form: 
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where the summation on the repeated index k is applied. 
Since the updated formulation is considered, the quantities of interest shall be given at 

time t + ∆t, at which the structure configuration is sought (denoted by left superscript), 
but with respect to the last calculated configuration, i.e. the configuration at time t (de-
noted by left subscript1). If this is not so, it will be outlined. Taking this remark into ac-
count, the Green-Lagrange strain measure can be rewritten in the condensed form: 

 }{}{}{ ttt η+ε=ε ∆+∆+∆+ t
t

t
tGL

t
t , (4) 

where }{tt
t ε∆+  is the linear term, and }{tt

t η∆+  is the nonlinear term. Now, the Green-La-
grange strain tensor can be interpreted as being equal to the engineering strain tensor in a 
system rigid-body rotating with the particle [7]. Therefore, a relation between the engi-
neering strain tensor and the Green-Lagrange strain tensor at time t + ∆t can be estab-
lished by means of deformation gradient matrix: 

                                                           
1 The system of notation follows Bathe [1] 
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where ]F[tt
t

∆+  represents the deformation gradient matrix: 
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with ∆ denoting the increment of the quantity of interest between two successive configu-
rations. 

Similarly, the 2nd Piola-Kirchhoff stress tensor, ]S[tt
t

∆+ , can be related to the Cauchy 
(engineering) stress tensor at time t+∆t, t+∆t[σ], via: 

Ttt
t

tt1tt
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A similar interpretation as for the Green-Lagrange strain can be made here [7]: the 2nd 
Piola-Kirchhoff stress tensor is equal to the Cauchy stress tensor in a system rigid-body 
rotating with a particle. 

The 2nd Piola-Kirchhoff stress vector can also be related to the Green-Lagrange strain 
vector, through the material constitutive law: 

 }{]C[}S{ GL
tt
t

tt
t

tt
t ε= ∆+∆+∆+ . (8) 

The Green-Lagrange strain and the 2nd Piola-Kirchhoff stress exhibit very important 
properties. They do not change when a structure undergoes a rigid-body motion [1]. As a 
consequence, they can be incrementally decomposed, so that it can be written: 

 }S{}{}S{ t
ttt

t +σ=∆+ , (9) 

where t{σ} is the Cauchy (actual) stress, and t{S} is the incremental 2nd Piola-Kirchhoff 
stress due to incremental displacements, both at time t, and it should be noted that 

}{}S{ tt
t σ≡ . A similar equation is valid for the incremental decomposition of the strain. 

The second approach to the problem is the so-called co-rotational approach. As it was 
pointed out by the example in Fig. 1, although the rigid-body motion does not affect the 
strain and stress state of the structure, their tensor representation with respect to the fixed 
coordinate system do change. However, the tensor representation with respect to the co-
ordinate system fixed to the structure would not change. Hence, the term "co-rotational" is 
taken here to relate to the provision of an auxiliary coordinate system that continuously 
rotates with the structure and with respect to which small strain-small displacement (or 
engineering [4]) relationship can be applied, provided small incremental steps are used. 
Belytschko et al. [2, 3] applied the co-rotational approach to dynamic analysis using an 
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explicit formulation, which itself requires small time-steps due to the stability require-
ments of the method. Generally speaking, a structure fixed coordinate system can be pro-
vided at each point of the discretized representation of the structure. Furthermore, such a 
coordinate system, namely the structure reference system, was already introduced in the 
first part of the paper for the purpose of modeling generally shaped composite laminates. 
The introduction of this coordinate system was necessary primarily due to the non-iso-
tropic material properties. It requires the calculation of the strain and stress field with 
respect to the very same reference frame. Thus, this coordinate system can also be taken 
advantage of in order to extend the linear formulation into the geometrically nonlinear 
one and this approach is used in the present work.  

4. FINITE ELEMENT EQUATIONS 

The piezoelectric continuum equation for the geometrically nonlinear analysis using 
the updated Lagrangian relates two successive system configurations (let's say at time 
t + ∆t and t), whereby all the quantities are referred to the last determined system configu-
ration. The choice between the static and the dynamic analysis, i.e. whether to include 
inertia and damping forces or not, is a matter of the engineering judgment (just as for the 
linear or the nonlinear analysis). The static analysis demands less numerical effort, but 
one should be cautious on that matter – the choice of the static analysis needs to be justi-
fied, otherwise the predicted behavior of the structure might suffer on accuracy. The 
scope of this paper covers only the static analysis. 

In the nonlinear static analysis time is included only to denote gradually increasing 
loads. The whole load set is partitioned into a number of increments. After determining 
the structure configuration at time t, a new load increment is imposed, and a new structure 
configuration is sought so as to satisfy the equilibrium condition with the dynamic effects 
neglected. The Hamilton's principle for the piezoelectric continuum applied between two 
successive structure configurations yields: 

 )WW(H int
t

ext
ttt ∆−∆δ=∆δ ∆+  (10) 

which represents the energy balance throughout the incremental displacements: 

Incremental electric enthalpy = 
 Work of external forces at time (t + ∆t) throughout incremental displacements {∆u} – 

 Work of internal forces at time (t) throughout incremental displacements {∆u} 

The developed form of equation (10) is given as: 
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Performing the discretization of the structure and using the element incremental nodal 
displacements and potentials vectors, equation (11) results in the following linearized 
system of equations on the element level:  
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where t[G] represents the displacements derivatives matrix. In coordinate system (x, y, z) 
with displacements (u, v, w) it will be: 
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The reason for the presence of matrix [G] in equation (12) becomes more obvious after 
noting that the nonlinear part of the strain field (see (3)) can be represented in the fol-
lowing way: 
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where [A({u})] is the part of the nonlinear strain-displacement matrix that is used in the 
total Lagrangian formulation since all the quantities are referred to the initial configura-
tion and it depends on the initial displacements [4]. In the updated Lagrangian configura-



D. MARINKOVIĆ, H. KÖPPE, U. GABBERT 8 

tion there is no initial displacement effect because the last determined configuration is 
"frozen" and all the quantities are referred to it. 

Matrix t[BL] in (12) is the strain-displacement matrix used in the linear analysis, and 
[σ] is the engineering stress matrix in the last determined system configuration of the fol-
lowing general form: 
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and, t{∆ue} and t{∆φe} are the incremental element nodal displacements and potentials 
vectors, respectively. All quantities are defined at time t, which corresponds to the last 
calculated configuration. 

Using the notation characteristic for the finite element method the following abbrevi-
ated form of (12) and (13) is obtained: 
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where t[KuuT] represents the mechanical tangential stiffness matrix: 
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the piezoelectric coupling and dielectric stiffness matrix are given as: 
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and, finally, t{finte} and t{qinte} are the element internal forces and electric charges vectors, 
respectively, defined as: 
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and t+∆t{fexte} and t+∆t{qexte} comprise the element external forces and electric charges. 
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Introducing generalized element tangential stiffness matrix [KT], generalized incre-
mental element displacements vector {∆Ue}, generalized element external forces {Re} and 
generalized element internal forces {Fe}, equations (12) and (13) can be given as: 

 }F{}R{}U{]K[ e
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e
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T
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Hence, in the static case the equilibrium throughout the deformation of the structure is 
accomplished exclusively between the external and the internal generalized forces. The 
equilibrium condition yields the incremental displacements (mechanical and electrical) 
between two successive configurations. The stiffness matrix is not constant (as it is as-
sumed in the linear analysis) due to the continuously changing configuration. Therefore, 
the governing nonlinear equation is linearized through the tangential stiffness matrix, 
which also takes into account the stress field in the previous configuration. The discrete 
update of the tangential stiffness matrix is performed after each incremental time step. 
However, the tangential stiffness matrix undergoes a continuous change during the de-
formation. For that reason the modified Newton-Raphson method is used to improve the 
accuracy of the solution based on the linearized equations. In this method the tangential 
stiffness matrix is calculated at the beginning of the increment and then kept constant for 
all the iterations within that increment, thus avoiding the expense of recalculating and 
factorizing the tangential stiffness matrix in each iterative step.  

5. DEGENERATED SHELL ELEMENT IN GEOMETRICALLY NONLINEAR FORMULATION 

The degenerated shell element described in the first part of the paper [6] is a Mindlin 
type of element allowing transverse shear strains and stresses, it utilizes full biquadratic 
shape functions since it has 9 nodes, 6 degrees of freedom per node (3 displacements and 
3 rotations) and it has additionally as many electric degrees of freedom (difference of 
electric potential) as there are piezoelectric layers across the thickness of the element. The 
element uses the equivalent-single layer based approach for modeling multilayered mate-
rial with directionally dependent material properties (Fig. 2). 
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Fig. 2. Equivalent-single layer based approach for modeling multilayered material 

Only the additional element matrices and vectors, which are used within the geometri-
cally nonlinear formulation and are therefore not given in the first part of the paper, will 
be described here. 
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The geometrical stiffness matrix (initial stress matrix) due to the stress in the previous 
configuration is calculated in the following manner (see (19)): 

 [ ] [ ]∫ σ=σ
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T dVG]G[]K[  (25) 

with matrix [G] defined by (14) and [σ] by (16). Within the partial derivatives of the dis-
placements the terms related to displacements, [GT], can be distinguished from those re-
lated to the rotations, [GR]. Furthermore, considering latter, the distinction can be made 
between the terms constant with respect to the thickness coordinate, [GR0], and the terms 
that are linear with respect to the thickness, [GR1]. Taking advantage of the notations in-
troduced in the first part of the paper [6], it can be written: 
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)i,2(Bn)i,2(Bm)i,2(Bl
)i,1(Bn)i,1(Bm)i,1(Bl
)i,3(Bn)i,3(Bm)i,3(Bl
)i,2(Bn)i,2(Bm)i,2(Bl
)i,1(Bn)i,1(Bm)i,1(Bl
)i,3(Bn)i,3(Bm)i,3(Bl
)i,2(Bn)i,2(Bm)i,2(Bl
)i,1(Bn)i,1(Bm)i,1(Bl

]G[

333

333

222

222

222

111

111

111

Ti  (26) 

furthermore: 

 

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

′′=

000
000
000

)i,2(C)i,2(C)i,2(C
000
000

)i,1(C)i,1(C)i,1(C
000
000

BN
2
h]G[

'z'y'x

'z'y'x

ii0R  (27) 

and finally: 
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⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

′′′
′′′
′′′
′′′
′′′
′′′
′′′
′′′

=

000
)i,3(C)i,2(B)i,3(C)i,2(B)i,3(C)i,2(B
)i,3(C)i,1(B)i,3(C)i,1(B)i,3(C)i,1(B
)i,2(C)i,3(B)i,2(C)i,3(B)i,2(C)i,3(B
)i,2(C)i,2(B)i,2(C)i,2(B)i,2(C)i,2(B
)i,2(C)i,1(B)i,2(C)i,1(B)i,2(C)i,1(B
)i,1(C)i,1(B)i,1(C)i,3(B)i,1(C)i,3(B
)i,1(C)i,1(B)i,1(C)i,2(B)i,1(C)i,2(B
)i,1(C)i,1(B)i,1(C)i,1(B)i,1(C)i,1(B

2
h]G[

'z'y'x

'z'y'x

'z'y'x

'z'y'x

'z'y'x

'z'y'x

'z'y'x

'z'y'x

i1R  (28) 

Now, a typical term of the geometrical stiffness matrix is given in the following form: 

 ∫ ∫ ∫
+

−

+

−

+

−
σ +σ

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

+
−−−−−−−−−−−=

1

1

1

1

1

1
j1Ri0RTj

T
i1R

T
i0R

T
Ti

ij drdsdt]Jdet[]]G[t]G[¦]G[[][
]G[t]G[

]G[
]K[  (29) 

Due to the kinematical assumptions of the first-order shear deformation theory and differ-
ent stiffness of layers, the stress is not a continuous function with respect to the thickness 
coordinate. However, layer-wisely it is a continuous function. Furthermore, layer-wisely it is 
a linear function with respect to the thickness coordinate in the local-running c. s., which 
continuously rotates with the element. Hence, the analytical integration in the thickness di-
rection has to be performed in a layer-wise manner, yielding: 

 ∫∫∑
+

−

+

− =

−−−

−−−

−−−

σ

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

σ+σσ

+σ+σ+σ

−−−−−−−−−−−−−−−−−−−−−−−−−−−+−−−−−−−−−−−−

σ+σσ

=

∫∫∫

∫∫∫

∫∫∫
1

1

1

1

N

1n

j1R

nt

1nt

n
2T

i1Rj0R

nt

1nt

n
T

i1RTj

nt

1nt

n
T

i1R

j1R

nt

1nt

n
T

i0Rj0R

nt

1nt

n
T

i0RTj

nt

1nt

n
T

i0R

j1R

nt

1nt

n
T

Tij0R

nt

1nt

n
T

TiTj

nt

1nt

n
T

Ti

ij

L

dsdr]J[det

]G[dt][t]G[]G[dt][t]G[¦]G[dt][t]G[

]G[dt][t]G[]G[dt][]G[¦]G[dt][]G[

]G[dt][t]G[]G[dt][]G[¦]G[dt][]G[

]K[  (30) 

where the summation runs over all NL layers, and [σn] is the function of the engineering 
stress matrix (contains a constant and a linear term) of the nth layer. The tangential stiff-
ness matrix comprises the contribution of both the stiffness matrix used in the linear 
analysis and the geometric stiffness matrix, as defined by (19). 
The internal forces are calculated according to (22). Making a distinction between the 
membrane-flexural (in-plane) stresses and the transverse shear stresses, and using once 
again the notation from the first part of the paper, it will be: 
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 dV
}{

}{
]]B[¦]B[[dV}{]B[}f{

s

mf

V

T
s

T
mf

V

T
Lint

⎪
⎭

⎪
⎬

⎫

⎪
⎩

⎪
⎨

⎧

σ
−−

σ
=σ= ∫∫ , (31) 

Representing the strain-displacement matrix in the developed form, the internal forces at 
node i are given as: 

 ∫ ⎪
⎭

⎪
⎬

⎫

⎪
⎩

⎪
⎨

⎧

σ
−−

σ

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

+
−−−−−−−−−−−+−−−−−=

V s

mf

T
si1R

T
si0R

T
fi1R

T
Tsi

T
Tmi

iint dV
}{

}{

]B[t]B[¦]B[t

]B[¦]B[
}f{ . (32) 

As mentioned before, the stress field is not a continuous function with respect to the 
thickness due to different stiffness of the layers across the thickness and therefore the 
layer-wise analytical integration over the thickness is to be performed, yielding the inter-
nal forces at node i as: 

 ∫∫
+

−

+

−
=

∑
∫ ∫∫

∫ ∫

⎪
⎪
⎪

⎭

⎪
⎪
⎪

⎬

⎫

⎪
⎪
⎪

⎩

⎪
⎪
⎪

⎨

⎧

σ+σ+σ

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

σ+σ

=

− −−

− −

1

1

1

1

N

1n
t

t

t

t

s
T

si1R

t

t

s
T

si0Rmf
T

fi1R

t

t

t

t

s
T

Tsimf
T

Tmi

iint

L

n

1n

n

1n

n

n

1n

nn

n

1n

n

1n

nn

drds]Jdet[

dt}{t]B[dt}{]B[dt}{t]B[

dt}{]B[dt}{]B[

}f{  (33) 

The derived matrices and vectors, together with those derived in the first part of the 
paper, allow the application of the 9-node degenerated shell element in the geometrically 
nonlinear analysis. A simple example demonstrates the behavior of the element.  

6. NUMERICAL EXAMPLE  

The following example is chosen in order to demonstrate the behavior of the element 
in the geometrically nonlinear analysis by applying the updated Lagrangian formulation of  

Layer 1: Thickness 3 mm
Young's modulus E =2.1 105 N/mm2

Poisson's ratio ν=0.3
Layer 2: Thickness 2 mm

Young's modulus E =1 104 N/mm2

Poisson's ratio ν=0.1
 

Fig. 3. Model of a clamped 2 layer plate with transverse forces acting on the free edge 

the co-rotational approach. The authors have used the already existing solver and there-
fore the example covers only the pure mechanical field. The work on the extension of the 
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solver with the aim of solving coupled electro-mechanical field in the geometrically 
nonlinear analysis is in progress. A clamped plate with the in-plane dimensions 40×40 
mm and the thickness of 5 mm is considered. The plate is made of composite material - 
two layers of different materials, the properties of which are given in Fig. 3. The plate is 
discretized by the 4x4 finite element mesh and the same vertical force of 3.3 kN acting 
downwards is applied at all nodes on the free edge of the plate. 

The diagrams in Figs. 4 and 5 show the prediction of the transverse deflection and the 
longitudinal displacement of the plate mid-line with the assumptions of linearity and 
nonlinearity taken into account. The linear solution is obtained as one increment solution, 
while the given nonlinear solution is obtained throughout 400 increments. The accuracy 
of the solution is directly affected by the number of incremental steps. As was already 
emphasized, the higher the number of incremental steps, i.e. the smaller the incremental 
step, the better the accuracy of the result. Hence, the increase of the number of incre-
mental steps results in the convergence of the obtained solution. In this specific case the 
convergence can be recognized for approximately 100 incremental steps, but the results 
are given for the last performed analysis with 400 incremental steps. 

As expected in this case, the predicted transverse deflection based on the linear as-
sumptions overestimates the actual, nonlinear result but, as can be seen in Fig. 4, the 
nonlinear effect is not strongly pronounced. On the other hand, the diagram in Fig. 5 
demonstrates what effect the assumption of linearity might have on the obtained result. 
This figure shows a significant difference between the linear and the nonlinear prediction 
of the longitudinal displacement along the plate mid-line. 
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Fig. 4.  Comparison of linear and nonlinear prediction of transverse deflection 

(ABAQUS shell element and here developed shell9 element) 
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Fig. 5.  Comparison of linear and nonlinear prediction of longitudinal displacement 

(ABAQUS shell element and here developed shell9 element) 

The free edge mid-point is chosen as a representative point and all the results from the 
diagrams in Figs. 4 and 5 are summarized in Table 1 for this point. 

Table 1. Clamped plate case – comparative results from ABAQUS shell and shell9 element 

Comparative results Linear solution Nonlinear solution 
Free edge mid-point Transverse deflection  
Abaqus shell element (8 nodes) −5.717 mm −5.549 mm 
Shell9 (9 nodes) −5.749 mm −5.606 mm 
Free edge mid-point Longitudinal displacement 
Abaqus shell element (8 nodes) +0.290 mm −0.175 mm 
Shell9 (9 nodes) +0.295 mm −0.182 mm 

7. CONCLUSIONS 

The paper points out the fact that results of an analysis can be significantly influenced 
by the assumptions made before the analysis is performed. The assumptions of the linear 
analysis require less numerical effort, but they have to be justified, otherwise the pre-
dicted behavior of the structure might suffer on accuracy. The choice between the linear 
and the nonlinear analysis lies on the engineering judgment. However, considering the 
active thin-walled structures, a need for a model that takes into account geometrically 
and/or materially nonlinear effects is demonstrated by a number of investigations. 
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The paper considers the active thin-walled structures made of piezoelectric composite 
laminates, which are susceptible to relatively large transverse deflections while exhibiting 
small strains. This case corresponds to the geometrically nonlinear formulation. The con-
tinuously changing configuration requires the introduction of either auxiliary strain and 
stress measures, or an auxiliary (co-rotational) coordinate system. The latter solution is 
adopted in the present formulation. The updated Lagrangian formulation of the problem is 
chosen because it facilitates the extension of the formulation into full nonlinear. This is 
especially important for the piezoelectric active structures due to the nonlinear behavior 
of the piezoelectric coupling even for small maximal values of the electric field [9]. It is 
intended in the future work of the authors to extend the present formulation with the aim 
of including this type of nonlinearity. 

The first part of the paper, which pertains to the linear analysis, represents the 9-node 
degenerated shell element as a suitable numerical tool for the finite element analysis of 
the active structures that are dealt with here. Based on the considerations given at the be-
ginning of the second part of the paper, the element is extended so that it can be used 
within the frame of the geometrically nonlinear analysis. The so-developed degenerated 
shell element is integrated in a special module of COSAR (www.femcos.de) originally 
developed for the nonlinear dynamic analysis of large scale systems. Nevertheless, it can 
also be used to perform the linear and nonlinear static analysis by means of the dynamic 
relaxation technique. The behavior of the element is demonstrated through a simple ex-
ample of static analysis. The present work of the authors is focused on the extension of 
the solver so that geometrically nonlinear dynamic analyses can also be performed for the 
coupled electro-mechanical field. 
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RAZVOJ KONAČNOG ELEMENTA ZA KOSTRUKCIJE  
OPŠTEG OBLIKA OD KOMPOZITNIH LAMINATA SA 

PIEZOELEKTRIČNIM KOMPONENTAMA 
DEO II – GEOMETRIJSKI NELINEARNI PRISTUP  

Dragan Marinković, Heinz Köppe, Ulrich Gabbert 

Tankozide konstrukcije sa piezoelektričnim komponentama, posebno one sa primetno većom 
membranskom od savojne krutosti, su podložne velikim ugibima. Ispitivanja brojnih istraživača 
sprovedena poslednjih godina pokazuju da na veličinu ugiba, frekvenciju oscilovanja, izlazni 
električni napon i druge veličine od značaja osetno mogu uticati pretpostavke velikih pomeranja i 
deformacija konstrukcije. Iz tog razloga drugi deo rada proširuje formulaciju datu u prvom delu 
na geometrijski nelinearnu analizu, čineći pretpostavku malih deformacija ali velikih pomeranja. 
Iskorišćen je korotacioni pristup. Razvijene su linearizovane jednačine metode konačnih elemenata 
za geometrijski nelinearnu analizu piezoelektričnog kontinuuma i primenjene pomoću konačnog 
elementa tipa "degenerisane ljuske" sa 9 čvorova koji je već opisan u prvom delu rada. 

Ključne reči:  geometrijski nelinearna analiza, aktivna konstrukcija, konačni element tipa ljuske, 
piezoelektrične komponente. 

 


