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Abstract. The paper deals with contact problem in huge rolling supports, used in 
industry and buildings. One of the main questions is the choice of the analysis type for 
the carrying elements check. In this paper linear and nonlinear contact static analyses 
are applied simultaneously. The aim is to identify the approximations and differences 
in the results on actual examples. The first performed analysis is was numerical, using 
FEA, based on the classical Hertz concept. Thereby the constraints are unchangeable 
during the load appliance, while the force is approximated with surface pressure 
according to the square parabolic law. One approximate procedure for the surface 
pressure determination is shown. These solutions are compared to the analysis based 
on the nonlinear contact theory. The nonlinear analysis better defines the stress 
distribution in the structure, because it uses variable boundary conditions, friction, sliding 
and the rigidity of bodies in contact. Further, the modeling of the same contact task 
through two different nonlinear models is shown and the comparison of all the three 
models is given. The results are given graphically and numerically. The finite element 
meshes, the model properties and composite stresses in contact zones are shown. The 
objective evaluation of these analyses gave the support behavior in practice. 

Key Words: Contact Pairs, FEM, Contact Analysis, Contact Models, Approximative Models  

1. INTRODUCTION 

The structural analysis of the biggest rolling supports is an exclusive category with the 
demand of highest engineering reliability. Therefore, three different approximate models 
were used, and numerical solutions using Finite Element Method were calculated. The 
technical solution for the given support [5] was used for the analysis, formed of two flat 
plates with the rolling body in between. The plates and the rolling body are massive con-
structive elements of alloy steel2, Fig. 1. How much engineering solutions of the model 
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can differ is the most important question. This question can be directly answered if a 
number of analyses are done, first simplified – linear, and afterwards nonlinear ones. Real 
industrial tasks overreach the complexity of Hertz's model because of the bending as an 
additive influence. Furthermore, plastic deformation can appear in the construction, which 
inducts sliding of the contact surfaces. The approximation comparison is shown in the 
following text, through three given models, which differ according to the influence com-
plexity and mechanical models of the analysis. These models are given in the following 
text. 

2. LINEAR ANALYSIS: MODEL-1 

The simplest model analysis is a linear one. The classical elasticity finite element 
method was used, where the structure equation is [K]•{q}={F} in which the rigidity matrix 
does not depend on generalized displacements {q} and generalized action {F}. The rolling 
support construction was modeled using 3D solid finite elements, with eight nodes, and 
linear shape functions with three degrees of freedom at each node. 

MODEL-1 (Fig. 1) treated directly the flat element of the support (the thick plate). 
The finite element mesh was made to have a bigger density in the contact area; besides, it 
was made according to the theoretical contact surface and the idea to lead in the surface 
pressure in few (8) discrete stress levels. Fig. 2 shows the discrete model of one half of 
the support plate. The surface pressure was spread according to the parabolic law in the 
cross section, Fig. 3. The pressure is uniform along the contact length. At the opposite 
side of the contact two lines of supports were placed (as appropriate for huge construc-
tions). Thus defined model is obvious and simple. The choice of the comparative stress 
for the stress level evaluation in the contact was made according to the expectance of 
elastic behavior, where the greatest amount of the energy is used for geometry deforma-
tion, (Hencky-Huber-Mises method). Maximal comparative stresses were analyzed and 
determined in the contact array. 
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The discrete FEM model was realized on half of the construction, which is possible 
because of the symmetry in geometry, supports and load. The influence of the rest of the 
structure was taken into account through boundary conditions. The half of the model 
treatment in return enabled the increasing of the number of the finite elements in the 
model. The realized discrete model satisfies the theoretical conditions for the 3D meshes 
topology development [7, 8]. The mesh was applied uniformly through the region depth. 
In the lower section of the part the contact area is indicated in Fig. 2. 
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Fig. 3. Parabola of the Pressure 

The contact influence of the cylinder is defined through surface loads (surface pres-
sure), as defined in literature [2], and spreads according to the square parabola law in 
contact between cylinder and endless flat surface (plate). Based on this law for spreading 
through continuum the surface pressure on the contact surfaces can be defined. In the 
model treated (MODEL-1) the force F=6.9⋅106 [N] was applied onto the whole contact 
surface. The working force was taken according to the real support from practice [5]. The 
half of the contact surface was modeled with 8 elements in the cross section of the plate, 
fig. 2. Based on this, the half of force corresponds to the sum of surface pressures onto the 
8 corresponding parts of the pressure parabola. In this way the concentrated working 
force was applied through discrete changeable surface pressure in 8 stripe-like contact 
zones. The realization of the approximation demands the determination of the parabola 
law. This was made according to the contact width and maximal surface pressure. The 
maximal pressure is calculated from the equality of total surface pressure and given 
working force in the support. The opening of the parabola (the contact width) a is deter-
mined according to relation (1), [2]. For that calculation the unit continual load along the 
length of the whole support is used q=F/L=6900000./0.98=7040816. [N/m’]. In this rela-
tion, the support length is L=0.98 [m], diameter of the cylinder in contact D=0.55 [m] and 
module of elasticity of steel applied E=2.1 1011 [N/m2] to real object [5]: 
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The total impact (contact) was accomplished on the width of 16 equal parabola stripes 
(Fig. 3), which gives single width of stripe (zone) of parabola: ∆x=a/16=0.575⋅10-3 [m]. 
Out of this width the coordinates of symmetric parabola half xi come out, as showed in the 
tabular way in T1. Starting from square parabola equation y=k⋅x2, with unknown (re-
quested) pressure ordinate p0, coefficient k of the parabola searched will have the value: k 
= ymax/x2

8 = p0/(4.6⋅10-3)2 = 4.7259⋅104⋅p0. Now, the ordinates are further defined as a 
function of unknown parameter p0 and given in T1. 

Table T1 

Band of 
parabola 

No: Fig. 3 
1 2 3 4 5 6 7 8 

Coordinates 
xi [m] 0.000575 0.001150 0.001725 0.002300 0.002875 0.003450 0.004025 0.004600 

Coordinates 
yi [m] 0.0156·p0 0.0625·p0 0.1406·p0 0.2500·p0 0.3906·p0 0.5625·p0 0.7656·p0 1.0000·p0 

The individual eight surfaces of the pressure parabola half treated can be evaluated by 
integration in the extending boundaries. The parabola surfaces along contact length L, 
correspond to concentrated forces Fi (i=1÷8) to which the plate is exposed, on the indi-
vidual widths of contact surfaces, given in relations (2): 
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(2)

 

The sum of single pressure forces on the left and right side of y-axis gives total pres-
sure force F on the support. From the balance according to equation (3), the requested 
integration constant – pressure p0 is found: 
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The ending points of surface pressures pi = p0 - yi in stripes 1÷8 are determined from 
ordinates yi in the parabola equation and they are shown in Table T2. The average-middle 
values of surface pressures pSRi+1 (on the contact surfaces) are evaluated out of the dis-
crete pressure values on the endings of stripe contact (zone) surfaces pi according to rela-
tion (4) and they are given in the tabular form in T2: 

 ,][N/m   )pp(p 2
1ii2

1
1SRi ++ +=  (4) 

These values are used as uniform pressures in 8 zones treated for the linear analysis, 
allocated according to the parabola in Fig. 3. In this way the influences on the supporting 
plate are approximately determined. The solution deducted by the linear analysis of the 
contact task, using the finite element method, gave compound stresses according to the 
Hencky-Huber-Mises hypothesis, along with the tangent stresses, in the contact zone, 
showed in Figs. 4, 5. 
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Fig. 4.  Iso Lines for Compound Stresses Fig. 5. Iso-lines for Tangent Stresses in the 
 According to the Hencky-Huber-Mises Linear Contact Analysis (MODEL-1) 
 Hypothesis in Linear Analysis (MODEL-1) 

Table T2 
Band of 
parabola 1 2 3 4 5 6 7 8 

Pressure 
pi [N/m2] 1.1300·109 1.0761·109 0.9865·109 0.8609·109 0.6995·109 0.5022·109 0.2690·109 0.·109 

Average 
pressure  

p SR-i 
[N/m2] 

1.1389·109 1.1031·109 1.0313·109 0.9237·109 0.7802·109 0.6009·109 0.3856·109 0.1345·109 
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3. NONLINEAR CONTACT ANALYSIS 

3.1. MODEL-2: Contact Analysis Using Gap-elements 

Nonlinearities in the contact tasks are qualified with the material nonlinearities, ge-
ometry and boundary conditions. The material non-linearity is determined by the class of 
"metal" materials with nonlinear elasto-plastic characteristics of stress-deformation [6], 
shown in Fig. 7. The yield characteristics are defined as multi-linearized stress and de-
formations curve. In this way the possibility is created for plastic deformities to appear. 
The geometrical non-linearities are caused by the elastic contact surfaces profile defor-
mations. These deformations are small, because with the material and shape choice we 
seek rigid geometries which provide rolling on kinematic elements (pairs). The boundary 
conditions non-linearity is provoked by the variability of the supporting points with the 
contact forces growth to the full value. The contact forces are the forces of working pres-
sure and friction. 

MODEL-2 is formed by taking into account the rigidity and boundary conditions 
changeability. This was performed using gap elements, with rigidity so tuned to corre-
spond to the rolling body rigidity. 

Gap elements are assigned the gaps of the contact surfaces based on outline geometry. 
The analysis treated the symmetrical half of the model. The whole model is presented in 
Fig. 6. The rigidity of gap elements is defined by average rigidity of middle rolling body 
support. With the group of Gap elements in the contact zone the changeability of gap 
between the curvature of the cylinder and the plate of rolling support was comprehended. 
The geometry and the gap dimensions are given in Fig. 6. 

  

∆z
=

0.
60

0 
10

  m
-6

∆z
=

0.
00

0 
   

   
 m

∆z
=

2.
40

0 
10

  m
-6

∆z
=

9.
62

0 
10

  m
-6

∆z
=

5.
41

0 
10

  m
-6

∆z
=

21
.6

4 
10

  m
-6

0.001725

∆z
=

29
.4

9 
10

  m
-6

∆z
=

38
.4

6 
10

  m
-6

∆z
=

15
.0

3 
10

  m
-6

0.00115

0.0023

0.00460

0.002875
0.00345

0.004025

0.000575  m

x z

ROLLING
BODY

PLATE

GAP

PRESSURE

SI
M

M
E

T
R

Y

GAP

PRESSURE

0.400  m

           
Fig. 6. MODEL-2: Modeling of the Supports in Non-linear Contact Analysis Using 

Gap Elements along the Contact Outline  



 Approximate Contact Models of the Rolling Supports 75 

According to the Prandtl-Reuss elasto-plastic problem generalization, the plastic de-
formations increment is proportional to stress deviator [3]. Appropriate to this model, the 
total stress state was determined according to the equivalent increment of plastic defor-
mation and equivalent stress. The equivalent stress in plastic area σe corresponds to nor-
mal component stresses σx,σy,σz and tangent stresses τxy,τyz,τxz, and also is proportional to 
octahedral shear stress τokt

(3)
, as shown in relation (5): 
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Fig. 7. Curve of Elasto-plastic Stress-strain Material (Chrome-nickel Steel) 

The task was solved using the full incremental Newton-Raphson method. The dis-
placements until reaching the contact are large. The procedure is based on iterative solu-
tions of the equation: 
 }F{}F{}u{]K[ nr

i,n
a
ni

T
i,n −=∆⋅  (6) 

In equation (6) ]K[ T
i,n  is the Tangent rigidity matrix for step n in iteration i in Newton-

Raphson method. }F{ a
n  is overall (absolute) force vector in the step n, while }F{ nr

i,n  is force 
vector for step n in iteration i. {∆ui} is the vector of the searched solutions for node 
displacements of the discrete system. Newton-Raphson large displacements method (The 
large strain analysis) is always recommended when as the consequence of the contact 
bodies results in their shape change or change of the contact surfaces orientations. The 
iterative process convergence is achieved when residuum is less than the tolerance for the 
given value. Default tolerance value is 0.001. The convergence was checked using L2 
norm (Euclid norm), which is formed as a square root of the sum of unbalanced forces, 
squares Ri , in all degrees of freedom given in equation (7). Using the same geometry as 

                                                           
3 Octaedric shear stress depends on plasticity 
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in the previous linear model, the analysis with the results given in Figs. 13, 15 and 17 was 
performed. 
 5.02

i2
)R(}R{ ∑=  (7) 

3.2. MODEL-3: Contact Analysis Using Contact Pairs 

The modern contact tasks analysis is carried out by means of the method of direct 
constraints. It is realized using contact pairs [6,7]. The contact pairs in the cylinder and 
surface contact are contact surfaces. Hereby the target and the contact surfaces are de-
fined. The method follows the kinematics of the contact surface, resulting in boundary 
conditions defined in the moment of contact, along with further movement restriction. In 
the touching nodes contact forces Fi are applied. This method determines: the collective 
of finite elements where the bodies are in contact, the collectives of nodes that potentially 
can get in touch and the edges that potentially get in touch. 

The given discrete 3D mesh passes through these contact boundary surfaces. The 
nodes in the contact area are the contact analysis carriers. To these nodes the spherical 
(pinball) tolerant potential contact areas are assigned, Fig 8. 

Contact pair - Model 3

Pinballs

Contact surface

Target surface
 

Fig. 8. Contact Model "Surface-to-surface" 

When the node of other contact surface enters a tolerant array, the mechanical condi-
tions of the contact are placed. The way of pressure realization, the movement direction, 
possible sliding, and the rigidity of target surface nodes are defined. 

This is realized using the Gauss method. It identifies the Gaussian points that are in 
contact, as well as those which are out of contact and those near contact. In this way the 
non-linear analysis boundary conditions are defined, which do not depend on the initial 
assumptions about the contact pair rigidity. The rigidity of the real contact points is de-
termined in details in every analysis step. In this way the assumptions about the model 
rigidity are eliminated and the real contact points’ rigidity is used. The solution is ob-
tained using the Full Newton-Raphson method. The Penalty method can also be used. 

The ANSYS software uses contact the Augmented Lagrange algorithm. The concept 
of Gauss allows modeling of different mechanical models' contact situations. These are 
the situations of penetration, the preceding penetration, possibility/impossibility of sepa-
ration and large/small contact deformations. In the tetrahedral or wedge elements applica-
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tion, the contact surfaces are triangles and they do not have to obtain the full topological 
contact up to the element edges. As a result, the nonsymetry of the finite elements en-
gaged appears in the contact pair. This possibility is given by the analysis algorithm, 
which improves the numerical stability. Also, in this kind of analysis the initial closing 
can be given – the dimension of the contact applied. This eliminates the situation in which 
the Gaussian points do not identify the whole contact area, or that they pass one through 
another without cutting in the two neighboring iterations. 

The tribological phenomena of inner friction are implemented in the contact ask using 
exponential function (8), [6]: 
 ])1k(1[ vd

d
⋅−−+⋅µ=µ  (8) 

In equation (8), µ is the theoretical friction coefficient, µd is the dynamic friction coef-
ficient, k is the static and dynamic friction quotient, d is decay coefficient (sec/m), v is the 
slip rate (µ=0.2). 

The given task of the MODEL-3 has 10150 3D solid basic elements, 100 contact 
elements TARGE 170 and 100 contact elements CONTA 174. Taking into account the 
model symmetry, the problem was described with 12155 nodes and 34425 degrees of 
freedom4. Figs. 9, 10, 11 illustrate details of the non-linear contact analysis results for the 
whole MODEL-3 (shown in Fig. 1). The analysis comprises both the contact bodies.  

Fig. 9 shows the array of the maximal normal component stresses5, which amounts to 
1160.⋅106 N/m2. Fig. 10 shows the array of maximal tangent component stresses for both 
the elements in connection. Fig. 11 shows the disposition of the model displacements. In 
this model, while the outer forces work on the plate ends, the displacements of the plate 
ends are the largest. The smallest displacements are in the middle of the cylinder, where 
the bodies contact is obtained. 

STEP=1           
SUB =15          

σY   (AVG)

1

-.116E+10   

-.103E+10   

-.902E+09   

-.772E+09   

-.641E+09   

-.511E+09   

-.381E+09   

-.251E+09   

-.121E+09   

.905E+07    

December 2003.

NONLINEAR  
ANALYSIS

Structural Analysis
       MODEL-3

N/m2

BEARING  PLATE

X
Y

Z

 

STEP=1           
SUB =15          

τXY (AVG)  
DMX = .394E -03    
SMN =-.214E+09   
SMX = .210E+09     

1

-.214E+09   

-.167E+09   

-.120E+09   

-.725E+08   

-.254E+08   

.217E+08    

.688E+08    

.116E+09    

.163E+09    

.210E+09    

December 2003.

NONLINEAR  
ANALYSIS

Structural Analysis
      MODEL-3BEARING  PLATE

X
Y

Z

N/m2
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4 The realization on PC Intel P4/1.8 GHz was carried out in 960 sCP, with n=17 steps and average 100 
subiterations. 
5 This value approximately corresponds to the surface pressure integrational constant in MODEL-1. 
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It is obvious that the modeling made in this way involves both the constructive ele-
ments, with the contact characteristics better described. Furthermore, the prosperous con-
tact zone determination was carried out, based on its micro-deformation kinematics. 
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Fig. 11. Contact Analysis Using Contact Pair Result – Node Displacements (MODEL-3) 

In this way the complexity of the contact geometry mechanism was improved. The 
friction characterized by the "steel-to-steel" model was involved, as used in friction joints. 
The use of the real material characteristics gives the realistic picture of stresses (Fig. 14), 
based on numerically determined deformations. It primarily refers to the situation of 
elasto-plastic deformation state, which is identified in this analysis and the damages on 
the real object found experimentally [5]. 

4. RESULTS ANALYSIS 

The calculated results for the stresses and deformations give the basis for the contact 
pair accuracy evaluation. Deformations are a non-adequate evaluation criterion because 
the reliance conditions for the used models differ significantly. Therefore, the equivalent 
stresses calculated according to the theory of the biggest deformation work used for shape 
deformation (Hencky-Humer-Mises, better known as Von Mises) are the basic criteria for 
the engineering model validity evaluation. Principal stresses σ1, σ2, σ3 are calculated as 
based on component stresses σx, σy , σz , τxy , τyz , τxz and maximal tangent τMAX. The fol-
lowing table T.3 gives an overview of all the three analyses. The compound stresses in the 
linear analysis have overcome equivalent ones from the non-linear analysis maximally by 
5.42%. The smallest deviations are those among the non-linear analyses amounting to 3.05%. 

In Figs. 12 and 13 the iso-surfaces for the linear and non-linear analysis of the middle 
part of the plate are compared (one cross section). These results do not contain the edge 
concentration stresses in the plate in the contact zone and at the end of contact. The ex-
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treme values determined in this way are shown as mentioned bellow in Table T3. Fig. 14 
shows the equivalent stresses for the MODEL-3. The stress distribution similarity is obvi-
ous. The largest compound stresses according to Figs. 12, 13, 14 show up in the linear 
analysis. They are negative effects of the linearized characteristics stress-deformation 
defined with the elasticity modulus E=const. 

Table T.3. Model Analyses 

 MODEL-1 
Linear 

analysis 

MODEL-2 
Nonlinear  

analysis - GAP

MODEL-3 
Nonlinear analysis 
CONTACT PAIR 

Number of elements (3D) 
Number of gap/contact elements (1D) 
Node number 
Degree of freedom (DOF) 
Max. VonMises stress in contact array    (N/m2) 
Max. Equivalent stress in contact array  (N/m2) 
Max. Tangential stress in contact array   (N/m2) 
Deformation (on force vector trace)      ∆y (m) 
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In the linear analysis, larger deformations gave larger stresses, not the identification of 
plasticity. The calculated equivalent stresses in non-linear analyses MODEL-2/MODEL-3 
are close (580.735⋅106 / 563.000⋅106, N/m2) and they are caused by the different contact 
rigidity. In MODEL-2 the average rigidity constant of GAP element was used. The cal-
culated contact stresses are not only the consequence of the contact pressure, but also of 
the plate bending. In the analysis MODEL-3 the friction stresses of lower order showed 
up, Fig. 19. The equivalent plasticity stresses (in the contact zone) of MODEL-3 are given 
in Fig. 18. 
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Fig. 12. Von-Mises Stresses Iso-surfaces 

in Linear Analyses (MODEL-1) 
Fig. 13.  Equivalent Stresses in  

Non-linear Analysis (MODEL-2) 
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Fig. 14.  Equivalent Stresses in  

Non-linear Analysis (MODEL-3) 
Fig. 15.  Contact Zone – Solid Plastic 

Strain in Non-linear Contact 
Analysis (MODEL-2) 
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Fig. 16. Tangent Stresses Iso-surfaces in 

Linear Analyses (MODEL-1) 
Fig. 17. Tangent Stresses Iso-surfaces in 

Non-linear Analyses (MODEL-2) 
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Fig. 18. Equivalent Plastic Stresses in 

(MODEL-3) (in the Contact Zone)
Fig. 19. Contact Friction Stresses in 

MODEL-3 (the Contact Zone) 
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5. CONCLUSION 

The whole analysis is an example of the complex responsible structure treatment. The 
contact zone is the place of the highest stress in the support plate. The stresses obtained 
by this analysis represent the spatial state of stresses which comprises the plate deflection 
influence (as global deformation) and contact pressure (as local deformation). The classi-
cal Hertz theory and the existing regulations for constructions offer safety coefficients and 
allowed stresses for tensile, bending, shear and contact pressure cases, but not for a com-
bination of influences of bending and surface pressures for the spatial state of stresses. 

The obtained maximal stress σVON MISES=595295008. N/m2
 in the linear contact analy-

sis is larger than contact stress in non-linear analyses as the consequence of plastic mate-
rial deformation. The appearance of large stresses points out to the existence of plastic 
yield stresses and the risk which brings along the linear analysis. The compound stress is, 
on the other hand, much larger than the bending stresses, calculated by using the classical 
bending theory procedure (σS=125⋅106, N/m2). The combination of contact influence and 
bending of the plate can only be viewed, for now, through equivalent stress. The compre-
hension for the shearing and normal stresses influence and the plastic states elimination is 
the necessary category for the definition of the contact element construction. This can be 
efficiently realized using the contact analyses group for the known geometry whose 
maximal structural action is searched for. 
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APROKSIMATIVNI KONTAKTNI MODELI  
KOTRLJAJUĆIH OSLONACA 

Miomir Jovanović, Predrag Milić, Danko Mijajlović 

Radom je posmatran kontaktni zadatak velikih kotrljajućih oslonaca koja se koriste na 
industrijskim i gradjevinskim objektima. Jedno od osnovnih pitanja je izbor analize za proveru 
nosivosti kontaktnih elemenata. U radu je uporedno primenjena linearna i nelinearna kontaktna 
statička analiza. Cilj je da se na bazi konkretnih primera utvrde aproksimacije i razlike u 
rezultatima. Najpre je izvedena linearna numerička analiza, metodom konačnih elemenata, 
zasnovana na klasičnom konceptu Hertz-a. Pri tome su uslovi oslanjanja nepromenljivi u toku 
delovanja opterećenja dok je sila aproksimovana površinskim pritiskom po zakonu parabole 
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drugog reda. Prikazan je jedan aproksimativan postupak odredjivanja površinskog opterećenja. 
Tako dobijena rešenja linearne analize su uporedjena sa analizama zasnovanim na nelinearnoj 
teoriji kontakta. Nelinearne analize bolje definišu distribuciju napona u strukturi jer koriste 
promenljivost graničnih uslova, uvode trenje, klizanje i krutost kontaktnih tela. Rad dalje pokazuje, 
modeliranje istog kontaktnog zadatka kroz dva različita nelinearna modela i poredjenje sva tri 
modela. Rezultati su izloženi grafički i numerički. Pokazane su mreže konačnih elemenata, osobine 
modela i složeni naponi u kontaktnim elementima. Objektivnu ocenu ovih analiza, dalo je 
ponašanje oslonaca u praksi. 

Ključne reči: Kontaktni par, FEM, kontaktna analiza, kontaktni modeli, aproksimativni modeli 


