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Abstract. In this paper intelligent control approaches for complex combustion
processes have been considered. Successful applications of computational intelligence
for advanced modelling, identification and control of thermal plants are presented.
Specifically, neuro-fuzzy modelling of fluidized bed combustion process, and also
intelligent process control based on developed models have been considered. Also, we
have presented a novel control scheme for an industrial hard-coal combustion process
in a power plant based on reinforcement-learning in combination with neural
networks. These intelligent control approaches are aimed at complying with ever
stricter requirements for environmental protection while maximizing the efficiency
factor simultaneously keeping other process parameters within predefined limits.
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1. INTRODUCTION

Large-scale combustion power plants are monitored by and operated via process con-
trol systems, which solve problems of visualization, alarm indications and the application
of low-level control-components. It is commonly known that the performance of such
complex processes can be significantly improved through a higher control level realized
by manual control actions of an experienced operator. As automated solutions for this
high level control are very complicated, intelligent control solutions represent natural
candidates for these tasks [3][4]. Very important are harmful flue gas emissions such as
nitrogen oxides, sulphur oxides and carbon monoxide, which are result of the complex
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burning phenomena occuring in power plants. During the past decades, environmental
concerns and emission taxation policies have made their minimization a profitable task. In
addition to the developments in the plant construction and flue gas cleaners, also the pro-
cess operating conditions are an important and cost-effective way to affect these emis-
sions. Since the immediate objective of a power plant is the production of energy, the
obvious plant operator goal is to maximize the efficiency factor. Simultaneously, both the
system-constraints and great requirements for environmental protection limit the work-
space. Because of time varying plant properties caused by pollution, fair wear and tear,
changing coal qualities, etc., a control system is sought, which autonomously tries to
minimize a predefined cost function.

Intelligent control solutions proposed in the first part of this paper regard fluidized
bed combustion (FBC) process, and are based on the hybrid soft computing modeling
approach [13][16]. Modelling is realised through the implementation of fuzzy systems
using artificial neural networks (ANN), which provides for a trainable neuro-fuzzy struc-
ture. The learning methods of ANNs enable neuro-fuzzy systems to learn from data sets,
and due to the massive parallelism of the ANNSs efficient real-time processing and grace-
ful degradation of performance in the case of damage are provided. The fuzzy set theory
also enables NF systems to deal with the ambiguous or ill-defined data effectively and to
present the learned information in an understandable form. Fuzzy clustering and evolu-
tionary computing are also applied for model structure determination and optimization.
Combining numerical and linguistic information into model is the key-strategy obtained
by such hybrid approach, since complexity of the combustion processes makes applica-
tion of conventional modeling and advanced control strategies difficult [17]. Using both
expert knowledge and experimental data models of the FBC sulphur-dioxide emission are
constructed and then trained. Both static and dynamic models are considered, as well as
their usage for control purposes.

Reinforcement learning (RL) can be also be proposed to efficiently solve control
problems for complex combustion processes. The main idea of RL consists in using expe-
riences obtained through interaction with the environment (here combustion process) to
progressively learn an optimal value function. This value function predicts the best long-
term outcome an agent can receive from a given state when it applies a specific action and
follows the optimal policy thereafter [1]. The agent can use a RL-algorithm such as Sut-
ton's TD(A) algorithm [1], or Watkin’s Q-learning algorithm [2] to improve the long-term
estimate of the value function associated with the current state and the selected action.
Neural function approximators are useful because they can generalize the expected return
of state-action pairs the agent actually experiences to other regions of the state-action-
space. Thus, in the second part of the paper we have presented a new control scheme for
an industrial hard-coal combustion process in a power plant based on reinforcement-
learning in combination with neural networks.

2. COMPUTATIONAL INTELLIGENCE MODELLING AND INTELLIGENT CONTROL OF
FLUIDIZED BED COMBUSTION PROCESS

In fluidized bed combustion (FBC), besides fuel, the combustion chamber contains a
quantity of particles of inert material such as sand or ash. The combustion air entering
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from below lifts mixed material keeping it in constant movement and forming a turbulent
bed, which behaves like a boiling fluid. This essential feature is the basis for many excel-
lent properties of the FBC technology but it also makes the process highly complex [22].
In fact, possibility to reduce emissions is one of the main features of FBC technology. But
to be able to optimize the plant operation, models for the variables of the overall cost
function are required. With that and other aims concerning control of FBC plant in mind
[18][16], models for the SO, emissions based on the computational intelligence tech-
niques are considered.

Two primary tasks of fuzzy modeling are structure identification and parameter ad-
justment [10][11][12]. The former determines I/O space partition, rule antecedent and
consequent variables, the number of fuzzy rules, and the number and initial positions of
membership functions. The latter identifies a feasible set of parameters under the given
structure. The problem of structure identification can be tackled by use of a well-known
quick subtractive clustering technique developed by Yager/Filev and modified by Chiu
[11]. To deal with the problem of parameter adjustment, efficient neuro-fuzzy scheme
known as an ANFIS (Adaptive network-based fuzzy inference systems) [9] can be used.
ANFIS represents TSK fuzzy model as generalized feedforward neural network, and
trains it with plant I/O data, thereby adjusting the parameters of the antecedent member-
ship functions as well as those of the functional consequents.

2.1 ANFIS Systems and Subtractive Clustering Technique
Consider a first-order TSK fuzzy inference system that consists of two rules
Rulei: IfXisA4;and Yis B;then f; = px+q;y+r, i=12.

Fig. 1 illustrates the fuzzy reasoning and the corresponding ANFIS architecture, re-
spectively. Node functions in the same layer of ANFIS are of the same function family, as
described below. Note that O/ denotes the output of the i node in layer ;.

Layer 1: Each node in this layer generates membership grades of a linguistic label.
For instance, the node function of i node might be

0 -a d—x a
0! =m , (x) = maxmin L1 0, 1
! =, () = max minGy — d_cgg (1)

where x is the input to node i; 4, is the linguistic label (small, large, etc.) associated with
this node; and {a, b, c, d} is the premise parameter set (defining membership functions).

Layer 2: Each node in this layer calculates the firing strength of each rule
O =w, =p, ()xpy (»), =12, )

Layer 3: The i™ node of this layer calculates the ratio of the i/ rule’s firing strength to
the sum of all rules firing strength

i i=12. 3)
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Fig. 1. First-order TSK fuzzy model and corresponding ANFIS architecture

Layer 4: Node i in this layer has the following node function:
O} =W, [, =wi(px+q;y+1,) , )

where w; is the output of layer 3 and {p;, g;, ;} is the consequent parameter set.
Layer 5: The single node in this layer computes the overall output as the summation of
all incoming signals overall output

0] =overall output = ZW,f, = Z W,-fi/z w; . ®)

The hybrid learning algorithm of ANFIS consists of two alternating parts:

1) BP/GD which calculates error signals recursively from the output layer backward
to the input nodes, and

2) the RLSE method, which finds a feasible set of consequent parameters. We ob-
serve that, given fixed values of premise parameters, the overall output can be ex-
pressed as a linear combination of the consequent parameters

AX=B, (6)

where X is an unknown vector whose elements are the consequent parameters. An LSE of
X, namely X', is sought to minimize the squared error ||[AX-B|J. Sequential formulas are
employed to compute the LSE of X. For given fixed values of premise parameters, the
estimated consequent parameters are known to be globally optimal.

The subtractive clustering of I/O data produces a set of cluster centers, acting as pro-
totypical data points describing a characteristic modes of the system and therefore can be
considered as nucleuses of a fuzzy rules. In that way partitioning of the inputs and deter-
mination of the initial minimal rule base for ANFIS can be performed.

Namely, if a collection of n-normalized data points {x,, x,, ..., x,,} in an M-dimensional
space is considered, measure of the potential of data point can be defined as

P =Y epfbaly —x, [ a=4/7. )
J=l

The constant r, is effectively the radius defining a neighborhood. After the potential of
every data point has been computed, the data point with the highest potential is selected as
the first cluster center and the potential of each data point is revised [11].
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2.2 Fludized Bed Combustion (FBC) Process and SO, Emission

Normal operating temperature of the fludized bed is between 750+950°C. At this rela-
tively low temperature ash and moist fuels do not melt or sinter. Fuel properties like ash
content, particle size and moisture are of less importance. Generally, FBC is distinguished
by low operating temperatures (~1100 K), high excess air levels (~30%) intermediate
particle sizes (1+3 mm), long residence times (several minutes) and vigorous particle mo-
tion that dominates heat transfer and reaction processes.

Sulphur-dioxide removal from flue gas during the combustion process is possible by
adding limestone in bed, which is considered to be an important advantage of FBC.
Harmful gaseous emissions are converted to solid material that is eliminated from bed,
and there are also possibilities for its later usage. Binding of sulphur is dependent on
many parameters, where most important are: combustion temperature, molar ratio Ca/S,
bed height, fluidization velocity, excess air ratio, primary/secondary air ratio, characteris-
tics of limestone, size of particles of limestone, heating velocity, etc. Consequently, harm-
ful flue gas emissions containing sulphur oxides are a result of the complex burning phe-
nomena and the individual construction of the plant in question.

2.3 Model Inputs/Output and Experimental Training Data

Input signals for SO, flue gas content model were selected based on a priori knowl-
edge on the conditions affecting the formation and reduction of sulphur-dioxide in FB
combustion process, which are briefly described in the previous section.

Atmospheric Circulating
Fluidized-Bed Boiler

Heat
Exchanger

Cyclone —
Fabric Filter

Coal Limestone
Combustion

o N Chamber
ﬁ ‘ ﬁ ‘ Partition

To Boiler
Feed Water

Generator

Solid Waste To Disposal Steam Turbine

Fig. 2. Schematic representation of one of the FB plants used for experiments

First model input is selected to be molar ratio Ca/S. This ratio is in practical operation
of FBC experimentally nearoptimaly determined, and is always selected as greater than
one since desulphurization is improved when more limestone is added in the combustion
bed than theoretically needed. Second considered model input is bed temperature, de-
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noted as 6. Below optimal temperature porosity of CaO is decreasing since calcination of
limestone is substantially smaller. On higher temperatures intense sintering occurs, pores
are closed and desulphurization is also decreased, thus influence of bed temperature is
wast. Besides the basic model version with two inputs, another approach with two addi-
tional inputs, excess air ratio A and fluidization velocity v, has also been tested. Excess
air does not influence desulphurization process directly, but it has indirect positive effect.
When fluidization velocity increases, time of contact of SO, and limestone particles de-
creases, so desulphurization is lowered.

Experimental data used in this study originate from several previous researches con-
cerning FBC, conducted at the Thermal engineering department of the Mechanical Engi-
neering faculty in Ni§ [19][20][21]. Schematic representation of one industrial plant with
FB used in this experiments is shown in Fig. 2.

2.4 Methodology and Obtained Results

Several versions of the ANFIS model structures, have been considered. First, versions
with two (Ca/S, 0) and four inputs (Ca/S, 0, A, v,) were tested, while model output was
percent of SO, removal from flue gas, denoted as Ngp, in all considered cases. One real-
ized approach with three inputs is shown in Fig 3.

Gy =i

Tupinr
kiFs Mudid

Cisrpar BiFs

Fig. 3. ANFIS network with 3 inputs and 6 rules

Partitioning of input spaces, i.e. selection of number of primary fuzzy sets for each in-
put variable is nontrivial task, along with determination of type of membership functions
to be used. Increase of number of primary fuzzy sets leads to exponential growth of num-
ber of parameters that need to be adapted during training, and also decreases interpret-
ability of the obtained result. Partitioning based on expert process knowledge and on
fuzzy subtractive clustering have both been considered.

Also, interpretability of the obtained results was issue of interest. Beside the fact that
qualitative knowledge about the process was used along with available numerical data
thanks to applied NF modeling approach, obtained results after training could also be
transformed into understandable information. Multicriteria optimization of the obtained
models by applying genetic algorithms with real coding [15] in order to achieve increased
accuracy and/or interpretability of the models has also been tested.



Intelligent Control of Complex Combustion Processes 1399

Developed models were capable of capturing the nonlinearities in process data, the
training was efficient and prediction accuracy of the obtained models is good. That goes
along with other features, such as interpretability of the models, acquisition of all sources
of information on the process, etc.

2.5 Intelligent Control of FBC Desulphurization

Developed computationally intelligent models are intended to be used as aproximators
for determination of optimal process parameters in relation to SO, removal from flue
gases. Models are to be integrated in FBC boiler's control system at supervisory level, and
have the task of estimating parameters for basic control loops. Optimization of emissions
demands compromises between different aims, and proposed models provide inputs for
the optimization cost function which defines optimal balance between plant's thermal effi-
ciency and emissions.

Beside described usage, developed models can be integrated in an expert system [14],
which advises plant operators when limits for NO,, SO,, and CO emissions are reached
and helps to stabilize burning conditions. Such a system provides easy access to the
knowledge concerning emissions and helps operators to act quickly and efficiently, while
effects of actions can be clearly seen. It can be used not only in plant operation, but also
for training. Its structure is shown in Fig. 4.
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Fig. 4. Expert system for monitoring Fig. 5. Dynamic fuzzy model
emissions in FBC boiler plant of the SO, emission with FBC

The main power of the proposed approach lies in centralized aquisition of all sources
of information about the process, whether they origin from the operators' experience,
theoretical knowldge about the process or measured data. Expert system can also
potentially be based on computational intelligence, i.e. it can also be fuzzy.

Beside proposed static models of the emission of SO, in boilers with FBC, identifica-
tion of dynamic fuzzy models for the sake of application in the framework of adaptive
control of FBC process has been considered as a potentially feasible concept. For dy-
namic modelling of the emission widely used strategy of external dynamics has been ap-
plied. This concept allows for an efficient application of fuzzy models of dynamic sys-
tems in advanced control systems. Fig. 5 shows the extension of the basic idea of static
modelling to a dynamic version of a model.
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3. CONTROL SCHEME FOR COMBUSTION PROCESSES USING REIFORCEMENT
LEARNING BASED ON NEURAL NETWORKS

Based on motivation stated in section 1, another intelligent control approach for com-
plex combustion processes can be considered. Namely, reinforcement-learning (RL) [5]
based control scheme, which allows an autonomous exploration of the state-action space
of the combustion process, while predefined quality factors have to be optimized.

This approach efficiently addresses the inherent problem of many other control ap-
proaches - limited portability to other plants, due to different process parameters. RL is
much more flexible, portable and can also adapt to changing plant properties. This main
advantage of RL implies a minor drawback, because during the exploration phase the
system has to perform many different control actions, of course also suboptimal ones.

3.1 The Plant

The power plant "Tiefstack" that was used for experiments is owned by the "Hambur-
gische Elektrizaetswerke" (HEW) and is situated in the south of Hamburg. The subsystem
to be controlled consists of 6 burners aligned in 2 columns at 3 levels having a maximal
output of 252MW (Fig. 6). The burners at each level are supplied with coal by one coal
mill. Although the distribution of coal should be equal for each of the 2 burners, due to
varying dynamics or pollution this equilibrium is shifted to the benefit of one burner. The
exact amount of inlet coal can not be measured for each burner separately.

To get more burner specific information about the distribution of coal and air inside
the combustion chamber or about the flames, we observe each of the 6 flames by a special
color camera system, and use these data to control the process. Fig. 7 depicts the extrac-
tion of visual features describing the combustion process. In order to reduce the large set
of flame-describing features, we analyzed the correlation of the visual features and several
important process data, for instance the NO, and O, emissions and the waste gas tem-
perature. It was found that already the mean intensities in the R-Band of the RGB-images
of the flames (Foo™'"... Foo®™®*?) entail very detailed information about the distribution
of coal and temperature inside the combustion chamber.

DENOX

primary air 32
primary air 31

ndary air 3
secondary air 31 oYy \)\)\)

exhaust fan

@ @ E-filter gas preheater exhaust gas

desulphurization

coal mill 30 coal mill 20 coal mill 10

Fig. 6. Schematic view of the power plant "Tiefstack"
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Fig. 7. Extraction of visual features describing combustion process very closely

The plant operator defined the goal of the controller as follows. First, we have to sat-
isfy several limitations at all times to guarantee the safety precautions:

* steam temperature > 540°C, ¢ unused carbon < 5%,

* waste gas temperature > 340°C, e 0,>3%.

« NO, concentration in waste gas < 1200 mg/m’,

In addition, the control system has to minimize both the NO, emissions and the air
consumption in order to increase the efficiency factor. To fulfil the defined goals the plant
operator gave us direct access to the controls depicted in Table 1 (also Fig. 8).

Table 1. Control variables

Control variable Meaning

primary air trim at levels 10, 20, 30 air-distribution between left/right burner on the specified level
primary/secondary air trim for all burners distribution between primary/secondary air at one burner

air amount at levels 10, 20, 30 overall air amount on the specified level

The 12 controls (Fig. 8) only influence the air amount and the distribution of air be-
tween 6 burners, but neither amount nor distribution of inlet hard-coal.

3.2 Architecture

The main feature of RL is its self exploration of the outcomes of control actions with
respect to a predefined goal. Based on a sensory description of the current process situa-
tion, the RL-systcm selects an appropriate control action, performs it, observes its conse-
quences and acquires a reward (Fig. 9). The task of the architecture is to obtain a utility-
value for all experienced state-action-pairs, which is defined by the reward and the dis-
counted value of the new state. So called classical Q-learning has been used because of
very promising experiences on robot-navigation tasks [6][7].



1402 7. COIBASIC, V. STEPHAN, H.-M. GROSS, J. WERNSTEDT

air level x0

air amount

air trim left/right

Ed

secondary air primary air primary air secondary air

primary/secondary|
air trim

primary/secondary
air trim

burner
level x0

Agem
coal dust + hot air
Siuation s B iion
burner x1 burner x2
coal mill x0 I\'\_ Erwironmeni

Fig. 8. Combustion chamber with coal and air Fig. 9. Interaction between
supply for one of three burner-levels RL-system and the process

During the exploration phase the RL-system has to perform all control actions in all
process situations. However, due to the tremendous action space (12 independent control
variables) in combination with the very large process situation space a full exploration of
all state-action-pairs would last a very long time and is therefore not applicable.

3.3 Problem decomposition

We designed several agents, each observing only a relevant subset of the situation
space and using only a subset of the available controls, as it is shown in Fig. 10.

Thus, AGENTL10, AGENTL20, and AGENTL30, observe only the intensity-ratios of
the left and right flame on all levels and control the air distribution at their corresponding
burner level (3 control variables each). AGENTO, observes the intensities of all flames
and the global ratio of inlet air and coal (X). This Agent controls the total amount of air
consumption for each burner level (3 control variables). The introduction of a scheduling
of the 4 agents at this point is very important, since the reinforcement-approach assumes,
that each agent is able to observe directly the consequences of its own actions. If two
agents would perform their actions together, the consequences of their actions (e.g. NO,
concentration) would interfere and the resulting cross-talk between the agents would pre-
vent a correct acquisition of the real outcomes of the respective actions. Hence, we de-
fined that all 4 agents operate sequentially in time intervals of 10 minutes, which is pre-
sented in Fig. 11.

3.4 Neural Function Approximator

Each of these 4 agents is realized by a neural function approximator. A simple ap-
proach to this state-action function approximator is the one that combines a neural vector
quantization technique (Neural Gas [8]) for optimal clustering of the high-dimensional
continuous input space [7] with a subsequent associative memory, to estimate the values
of the assigned actions (Fig. 12).
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The neural-gas weight w,(¢) update rule for the neuron & can be defined as:
_ itk
Bw, (0 =n"" (O " Qx(0) = w, (0], (8)
where #7'°(¢) is a learning rate, i(k) is the index of neuron £ in the list sorted by distance to
the input x(¢) and 4(?) is the learning radius. Thus, the real-valued process describing input

data are mapped onto a low dimensional representation s'. For action-value approximation
QO for state 5" and control action a', we utilize the O-learning [2] variant of RL. The usage

of expected future returns discounted by vy in addition to the current reward ensures a
policy maximizing long term rewards, thus searching a global maximum:

AQ(s',a'y=n{r' +y(s"")-0(s",a")}, with )
V(s™) =max0(s"™,a"™). (10)
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For our experiments, we use a discount factor for the value of the subsequent state of
v=0.5, and a Q-learning-rate of n=0.2. The reinforcement r is the result of an agent-spe-
cific reinforcement function, which strongly corresponds to the described plant operator
objectives. Agents AGENTL10, AGENTL20 and AGENTL30 are rewarded if the NO, or
the O, concentrations decrease and punished if they increase:

=10.0 :  any treshold violated

rAgentLXX — E
EKNOX [ANO, + K, DO, @ else

(11)

The reinforcement depends on the O, concentration, since these agents can only
change the distribution of the air, and a reduction of unused oxygen implies, that this re-
distribution caused a more complete combustion of the coal. Agent AGENTO?2 is also
rewarded, if the NO, concentration or the total amount of used air decreases:

—10.0 :  any treshold violated

rAgentOZ — E
vo, IBANO, +K ;. (Mir @ else

(12)

Any violation of thresholds for process data, that are defined by safety precautions of
the plant, results in a very strong punishment. The terms Kyo,, Ko, and K, allow to bal-
ance the importance of the NO, concentration and the efficiency value.

3.5 Results

To reduce the exploration time for the plant, we pre-trained our multiagent-approach
on past process data. This is a kind of supervised reinforcement learning. The decreasing
of cluster error documented the adaptation of the neural gas towards the distribution of
process situations in the input space.

In Fig. 13 comparison of the standard conventional control scheme with fixed air dis-
tributions used previously and multiagent-reinforcement-system is given. The amount of
used air could be reduced significantly by the reinforcement-system. In contrast, both the
NO, and O, waste-gas concentrations remained at the same level, but the potential for
NO, and O, reduction vanishes with increasing load factors of the power plant. During
these experiments the power plant worked with a load of about 90%.
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Fig. 13. Comparison of the conventional and reinforcement-based control schemes
by for a time period of about 6 days
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4. CONCLUSIONS

In this paper we have presented intelligent control solutions for some complex com-
bustion processes. Firstly, modelling problem was studied that originates from the fluid-
ized bed combustion process, specifically models for the flue gas SO, content were identi-
fied using soft computing models. Concisely recapitulated, triple usage of the developed
computationally intelligent models of the emissions in FBC has been proposed for intelli-
gent control of FBC boilers:

» application of static NF models of emissions in order to provide for input values
for optimization criteria, on the basis of which reference values for basic control
loops are calculated;

» application of static NF models in expert system that has the task of centralized
treatment of information on harmful gaseous emissions and also to provide rec-
ommendations to plant operators;

» application of dynamic fuzzy models of emission and their inverses for design of
control in the framework of adaptive fuzzy control with internal model and fuzzy
predictive control.

Secondly, we have presented a reinforcement-based multiagent approach based on
neural networks to control a complex industrial combustion process. To cope with both
the tremendous action and situation space of the power plant, we decomposed the com-
plex system into several agents. The proposed multiagent-reinforcement-system consists
of 4 agents, which are realized by relatively simple neural function approxirnators. Neural
function approximators are very useful, because they can generalize the expected return of
state-action pairs the agent actually experiences to other regions of the state-action-space.
Thus, the agent can estimate the expected return of state-action pairs that it has never ex-
perienced before.

Our results are very promising, and demonstrate wide applicability of intelligent con-
trol to complex burning processes. Nevertheless, the application of computational intelli-
gence to these demanding control problems represents also a great challenge.
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INTELIGENTNO UPRAVLJANJE SLOZENIM
PROCESIMA SAGOREVANJA

Zarko Cojbasi¢, Volker Stephan,
Horst-Michael Gross, Jiirgen Wernstedt

U radu su razmatrani inteligentni pristupi upravljanju sloZenim procesima sagorevanja.
Razvijene su uspesne primene racunarske inteligencije za modeliranje, identifikaciju i upravijanje
termoenergetskim postrojenjima. Konkretno, razmatran je neuro-fazi pristup modeliranju procesa
sagorevanja u fluidizovanom sloju kao i inteligentno procesno upravljanje na bazi razvijenih
modela. Osim toga projektovana je i nova upravljacka Sema za industrijski proces sagorevanja
uglja u termoelektrani, zasnovana na obucavanju sa osnazZivanjem u kombinaciji sa vestackim
neuronskim mrezama. Ovi inteligentni upravljacki pristupi su usmereni na zadovoljavanje sve
strozijih zahteva u pogledu zastite okoline uz istovremenu maksimizaciju faktora efikasnosti i uz
simultano odrzavanje drugih parametara procesa u definisanim granicama.

Kljuéne re€i: inteligentno upravljanje, procesi sagorevanja, fazi sistemi, neuronske mreze,

obucavanje sa osnazivanjem, genetski algoritmi



