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Abstract. This paper extends one of the basic results in the area of Lyapunov
(asymptotic) to linear, continuous singular time invariant time-delay systems. This
result is given in the form of only sufficient conditions and is related to the following
class of systems )()(x)(x 10 τ−+= tAtAtE! .
Our aim is to derive new and efficient results concerning asymptotic stability of a
particular class of linear continuous singular time delay systems.
To the best knowledge of the authors, such result have not yet been reported.

1. INTRODUCTION

It should be noticed that in some systems we must consider their character of dynamic
and static state at the same time. Singular systems are those the dynamics of which are
governed by a mixture of algebraic and differential equations. Recently many scholars
have paid much attention to singular systems and have obtained many good
consequences. The complex nature of singular systems causes many difficulties in the
analytical and numerical treatment of such systems, particularly when there is a need for
their control.

The problem of investigation of time delay systems has been exploited over many
years. Time delay is very often encountered in various technical systems, such as electric,
pneumatic and hydraulic networks, chemical processes, long transmission lines, etc. The
existence of pure time lag, regardless if it is present in the control or/and the state, may
cause undesirable system transient response, or even instability. Consequently, the
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problem of stability analysis for this class of systems has been one of the main interests
for many researchers. In general, the introduction of time delay factors makes the analysis
much more complicated.

We must emphasize that there are a lot of systems that have the phenomena of time
delay and singular simultaneously, we call such systems as the singular differential
systems with time delay. These systems have many special characters. If we want to
describe them more exactly, to design them more accurately and to control them more
effectively, we must paid tremendous endeavor to investigate them, but that is obviously
very difficult work.

In recent references authors had discussed such systems and got some consequences,
Xu, Yang (2000.a, 2000.b), Xu et al. (2001, 2002, 2003).

But in the study of such systems, there are still many problems to be considered.
Generally, the singular differential control systems with time delay can be written as:
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where x(t) ∈  Rn is a state vector, u(t) ∈  Rl is a control vector, E(t) ∈  Rn×n is a singular
matrix, ϕ ∈  C = C ([−τ,0], Rn) is an admissible initial state functional, C = C ([−τ,0], Rn)
is the Banach space of continuous functions mapping the interval [−τ,0] into Rn with
topology of uniform convergence.

When the general time delay systems are considered, in the existing stability criteria,
mainly two ways of approach have been adopted.

Namely, one direction is to contrive the stability condition which does not include the
information on the delay, and the other is the method which takes it into account.

The former case is often called the delay - independent criteria and generally provides
simple algebraic conditions.

In that sense the question of their stability deserves great attention.
Some attempts have been made in the area of Lyapunov stability of this class of

systems, Xu et al. (2002) but their approach follows the idea of canonical decomposition
of basic system description and offers a complex equations to be solved.

2. MAIN RESULTS

Consider a linear autonomous singular time invariant time delay system:

)()()( 10 τ−+= tAtAtE xx! , (2.a)

with associated compatible initial vector valued continuous function:

0,)()(x ≤≤τϕ= t  -tt .  (2.b)

Definition 1. Matrix par (E,A0) is said to be regular if det(sE − A) is not identically zero.
Definition 2. Matrix par (E,A0) is said to be impulse free if:

deg(det(sE − A)) = rang E. (3)
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The singular time delay system, given (2), may have no impulsive solutions, however,
the regularity and absence of impulses of the matrix pair (E,A0)  quarantee the existence
and uniqueness of an impulse free solution to the system under consideration.

Lemma 1. Suppose the matrix pair (E,A0)  is regular and impulse free, the solution to
the (2) exist and is impulse free and unique on [0,∞), Xu et al (2002).

Definition 3. The singular time delay system, given (2) is regular and impulse free if
the matrix pair (E,A0)  is regular and impuls free.

Defintion 4. The singular time delay system, given (2), is said to be stable if for any
ε > 0 there exist scalar δ(ε) > 0, such that for any compatible initial conditions ϕ(t),
satisfying: )(||)(||sup

0
εδ≤ϕ

≤≤τ−
t

t
, the solution x(t), system given (2), satisfies:

||X(t)|| ≤ ε, ∀ t ≥ 0.

Furthermore if 0 ||x(t)|| lim →
∞→t

 system (2)is asymptotically stable, Xu et al (2002).

Theorem 1. Suppose the matrix pair (E,A0)  is regular and impulse free and system
matrix A0 is regular as well, e.g. det A0 ≠ 0.

The system, given (2) is asymptotically stable, independent of delay, if :
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and if there exist symmetric positive definite matrix P on W, such that:

)(200 QSPAEPEA TT +−=+ , (5)

where matrix S is symmetric and positive in the sense that:

xT(t)(S + Q)x(t) > 0, ∀  x(t) ∈  Wk* \ {0}, (6)

Wk* being subspace of consistent initial conditions and matrix Q > 0, Owens, De-
beljković (1985).

Here σmax(⋅) and σmin(⋅) are the maximum and minimum singular values of matrix (⋅),
respectively.

Proof. Let us consider Lyapunov ,s functional:

κκκ+= ∫
τ−

dQtPEEttV
t

t

TTT )()()()())(( xxxxx . (7)

It should be noted, that from Theorem 2.1, Debeljković (1985) quadratic form:

)(x)(x))(x( tPEEttV TT= , (8)

is positive – definite on Wk* . It is obvious that all smooth solutions x(t) evolve in Wk*  so
V(x(t)) can be used as a "Lyapunov function", Owens, Debeljković (1985).

Clearly, using the equation of system motion (2), the first time derivative along the
trajectories in the state space is given by:
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and after a little rearrangements:
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From (5) and fact that matrix S can be chosen such that:
xT(t)Sx(t) ≥ 0, ∀  x(t) ∈  Wk* \ {0}, (11)

equation (10) is reduced to:

)()()()( )())((2))(( 1 τ−τ−−−τ−≤ tQttQttPAEttV TTTT xxxxxxx! , (12)

Based on very well known inequality1:
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one can easily get:
)()( )()())(( 1

1
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or:
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))(( tV x!  is negative – definite if:
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which is satisfied if:
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Using the properties of singular values of matrices, Amir - Moez (1956), the condition
(17) holds if:
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which is satisfied if:

0
)(

)(||||1 2/12
min

2/12
max

2
1 >

Ωσ
Ωσ−

− PEA T
. (19)

This ends proof.

Remark 1. If one treat linear ordinary (non-singular) system, then E = I, and results
derived are reduced to that given in Tissir, Hmamed (1996).
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3. CONCLUSION

A new result in the area of Lyapunov (asymptotic) stability to linear, continuous
singular time invariant time-delay systems is derived.

This sufficient condition is derived under the minimal number of assumptions and is
given in the form of so called the delay - independent criteria.
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TEORIJA STABILNOSTI DESKRIPTIVNIH SISTEMA
SA KAŠNJENJEM U SMISLU LJAPUNOVA: NOVI REZULTATI

D. Lj. Debeljković S. B. Stojanović,
M. B. Jovanović, S. A. Milinković

Ovaj rad proširejuje bazične rezultate iz asimptotske teorije stabilnosti u smislu Ljapunova na
posebnu klasu vremenski neprekidnih deskriptivnih sistema sa čistim vremenskim kašnjenjem.
Izvedeni rezultati dati su u formi samo dovoljnih uslova i odnose se na klasu sistema opisanih u
prostoru stanja svojim modelom tipa: 0 1( ) ( ) ( )E t A t A t τ= + −x x x! .Cilj rada je bio da se izvedu novi
i efikasni rezultati koji se tiču asimptotske stabilnosti ove klase sistema. Po saznanjima autora,
ovakvi rezultati, nisu do sada objavljeni.


