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Abstract. In this paper computationally intelligent modelling approach for fluidized
bed combustion process has been considered, and also intelligent process control
based on developed models. Applied adaptive neuro-fuzzy model structure provides for
efficient combining of available expert knowledge with existing experimental data. On
the basis of qualitative information on the desulphurization process models of the SO2
emission in fluidized bed combustion have been developed, which have been optimally
tuned with measured data. Obtained results indicate that such approach can be
successfully applied for economical and efficient reduction of SO2 in FBC by
estimation of optimal process parameters and by design of intelligent control systems
on the basis of defined emission model.

1. INTRODUCTION

In fluidized bed combustion (FBC), combustion chamber besides fuel contains a
quantity of particles of inert material such as sand or ash. The combustion air entering
from below lifts mixed material keeping it in constant movement and forming a turbulent
bed, which behaves like a boiling fluid. This essential feature is the basis for many
excellent properties of the FBC technology but it also makes the process highly complex
[17].

Harmful flue gas emissions such as nitrogen oxides, sulphur oxides and carbon
monoxide, are result of the complex burning phenomena and the individual construction
of the plant in question. During the past years, environmental concerns and resulting
emission taxation procedures have made their minimization a profitable task. In addition
to the developments in the plant construction and flue gas cleaners, also the process
operating conditions are an important and cost-effective way to affect these emissions. In
fact, possibility to reduce emissions are one of the main features of FBC technology. But
to be able to optimize the plant operation, models for the variables of the overall cost
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function are required. With that and other aims concerning control of FBC plant in mind
[13][10], in this study models for the SO2 emissions based on the computational
intelligence techniques are considered.

Hybrid soft computing modeling approach [6][10] applied in this paper is based on
the implementation of fuzzy systems using artificial neural networks, which provides for
trainable neuro-fuzzy structure that can benefit from both qualitative and quantitative
available information. Neuro-fuzzy systems combine the theory of artificial neural
networks and fuzzy systems. The learning methods of ANNs enable these systems to learn
from given training data sets, and due to the massive parallelism of the ANNs real-time
processing of larger data sets and graceful degradation of performance in the case of
damage are provided. The fuzzy set theory also enables the NF systems to deal with the
ambiguous or ill-defined data effectively and to present the learned information in a more
human understandable form. In this study fuzzy clustering and evolutionary computing
are also applied for model structure determination and optimization. Combining
numerical and linguistic information into model is the key-strategy obtained by such
hybrid approach, since complexity of the FBC process makes application of conventional
modeling and advanced control strategies difficult [12][11].

Using mentioned hybrid fuzzy modeling approach, models of the fluidized bed
sulphur-dioxide emission are constructed and then trained, using both expert knowledge
and experimental data. Both static and dynamic models are considered, as well as their
usage for control purposes.

Fuzzy modeling is one of the most significant areas of application of computational
intelligence approaches. Important category of fuzzy system models is based on the
Takagi–Sugeno–Kang (TSK) method of reasoning proposed by Sugeno and his
coworkers [3]. These models are based on a rule structure that has fuzzy antecedent and
functional consequent parts, thereby qualifying them as mixed fuzzy and nonfuzzy
models. TSK fuzzy models have the ability to represent not only qualitative knowledge,
but quantitative information as well. TSK fuzzy models also allow relatively easy
application of powerful learning techniques for their identification from data.
Furthermore, all fuzzy systems are nonlinear mappings and are proven to be nonlinear
universal function approximators [4], a property they share with neural networks (NN’s).
This property qualifies them as excellent candidates for identification and control of
nonlinear dynamical systems.

Two primary tasks of fuzzy modeling are structure identification and parameter
adjustment [2][3][4]. The former determines I/O space partition, rule antecedent (i.e.,
premise) and consequent variables, the number of IF–THEN rules, and the number and
initial positions of membership functions. The latter identifies a feasible set of parameters
under the given structure. The problem of structure identification can be tackled by use a
well-known quick subtractive clustering technique developed by Yager/Filev and
modified by Chiu [3]. It uses an exponential potential function to rank and select most
representative cluster centers from plant I/O data. These cluster centers are then used to
generate an initial TSK fuzzy model.

To deal with the problem of parameter adjustment, efficient neuro-fuzzy scheme
known as an ANFIS [1] can be used. ANFIS represents an initial TSK model obtained
from the structure identification phase as generalized feedforward neural network, and
trains it with plant I/O data, thereby adjusting the parameters of the antecedent
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membership functions as well as those of the functional consequents. ANFIS employs a
hybrid learning scheme that combines a well known BP/GD algorithm for adjusting the
parameters of rule antecedents, with a recursive least-squares estimation (RLSE)
algorithm for adjusting the parameters of the functional consequents.

2. ADAPTIVE NETWORK-BASED FUZZY INFERENCE SYSTEMS (ANFIS)

This section summarizes the basic architecture and the hybrid learning algorithm of
ANFIS [1], as well as MMC clustering technique for initial neuro-fuzzy model structure
determination [3].

2.1 ANFIS structure

Consider a first-order TSK fuzzy inference system that consists of two rules

Rule 1: If X is A1 and Y is B1 then 1111 ryqxpf ++=
Rule 2: If X is A2 and Y is B2 then 2222 ryqxpf ++=

If f1 and f2 are constants instead of linear equations, we have a zero-order TSK fuzzy
model. Figures 1(a) and (b) illustrate the fuzzy reasoning mechanism and the
corresponding ANFIS architecture, respectively.

Fig. 1. (a) First-order TSK fuzzy model using trapezoidal membership functions
and (b) corresponding ANFIS architecture.

Node functions in the same layer of ANFIS are of the same function family, as
described below. Note that j

iO denotes the output of the ith node in layer j.

Layer 1: Each node in this layer generates membership grades of a linguistic label.
For instance, the node function of ith node might be
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where x is the input to node i; Ai is the linguistic label (small, large, etc.) associated with
this node; and {a, b, c, d} is the parameter set that changes the shape of the trapezoidal
membership function. Parameters in this layer are referred to as the premise parameters.
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Layer 2: Each node in this layer calculates the firing strength of each rule via
multiplication

2,1),()(2 =µ×µ== iyxwO
ii BAii (02)

Layer 3: The ith node of this layer calculates the ratio of the ith rule’s firing strength to
the sum of all rules firing strength
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Layer 4: Node i in this layer has the following node function:

)(1
iiiiiii ryqxpwfwO ++==  (4)

where wi is the output of layer 3 and {pi, qi, ri} is the parameter set. Parameters in this
layer will be referred to as the consequent parameters.

Layer 5: The single node in this layer computes the overall output as the summation of
all incoming signals overall output
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2.2 The hybrid BP/RLSE learning algorithm

The hybrid learning algorithm of ANFIS consists of two alternating parts:

1) BP/GD which calculates error signals (defined as the derivative of the squared
error with respect to each node output) recursively from the output layer backward
to the input nodes, and

2) the RLSE method, which finds a feasible set of consequent parameters. We
observe that, given fixed values of premise parameters, the overall output can be
expressed as a linear combination of the consequent parameters

2222221111112211 )()()()()()( rwqywpxwrwqywpxwfwfwf +++++=+= . (06)

Equation (06) can be recast as a matrix equation

BAX = , (07)

where X is an unknown vector whose elements are the consequent parameters. An LSE of
X, namely X*, is sought to minimize the squared error ||AX − B||2. Sequential formulas are
employed to compute the LSE of X. Specifically, let the ith row vector of matrix A
defined in (07) be ai

T and the ith element of B be bi
T. Then
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where Si is often called the covariance matrix and the least-squares estimate X* is equal to
Xp. The initial conditions to bootstrap (08) are X0 = 0 and S0 = γI, where γ is a positive
large number and I is the identity matrix of dimensions M×M, where M is the number of
consequent parameters. For given fixed values of premise parameters, the estimated
consequent parameters are known to be globally optimal.

2.3 MMC clustering

The purpose of clustering is to distill natural groupings of data from a large data set,
producing a concise representation of a system’s behavior. The clustering of I/O data
produces a set of cluster centers, and each cluster center acts as a prototypical data point
that describes a characteristic mode of the system, and can be considered as the nucleus of
a fuzzy if-then rule. In that way partitioning of the inputs and determination of the initial
minimal rule base for ANFIS can be performed.

Namely, if a collection of n-normalized data points {x1, x2, ..., xn} in an M-dimensional
space is considered, measure of the potential of data point can be defined as

2
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2 /4,)||||exp( a

n

j
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=
. (09)

The constant ra is effectively the radius defining a neighborhood. After the potential of
every data point has been computed, the data point with the highest potential is selected as
the first cluster center. If x1

* is the first cluster center with potential P1
*, the potential of

each data point is revised by the formula
22* /4),||||exp( bjiiii rxxPPP =β−β−−← , (10)

where rb is positive constant, larger than ra in order to avoid high density of the cluster
centers (usually rb = 1.5ra) [3].

3. FLUDIZED BED COMBUSTION (FBC) PROCESS AND SO2 EMISSION

In fluidized bed combustion [17][5] the combustion chamber contains a quantity of
finely divided particles such as sand or ash. The combustion air entering from below lifts
these particles until they form a turbulent bed, which behaves like a boiling fluid. The fuel
is added to the bed and the mixed material is kept in constant movement by the
combustion air. The heat released as the material burns maintains the bed temperature,
and the turbulence keeps the temperature uniform through the bed. The heat capacity of
the solid bed particles gives the system thermal stability, which makes variations in fuel
properties less critical than with many other combustion systems.
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The normal operating temperature of the bed is between 750÷9500C. At this relatively
low temperature the ash and moist fuels do not melt or sinter. Fuel properties like ash
content, particle size and moisture are of less importance. Generally, the fluidized bed
combustor is distinguished by low operating temperatures (~1100 K), high excess air
levels (∼30%), intermediate particle sizes (1÷3 mm), long residence times (several
minutes) and vigorous particle motion that dominates heat transfer and reaction processes.

Sulphur-dioxide removal from flue gas during the combustion process is possible by
adding limestone in bed, which is considered to be one of the most important advantages
of FBC. Harmful gaseous emissions are converted to solid material, which is eliminated
from combustion bed, and there are also possibilities for its later usage. Degree of binding
of sulphur is dependent on many parameters, where most important are: combustion
temperature, molar ratio Ca/S, bed height, fluidization velocity, excess air ratio,
primary/secondary air ratio, characteristics of limestone, size of particles of limestone,
heating velocity, etc.

It is believed [5][17] that there are two basic reactions that take part during sulphur
binding and those are calcination and sulphatization:

23 COCaOCaCO +=   and   422 2
1 CaSOOSOCaO =++ (11)

During insertion in bed, limestone particle is heated and on higher temperatures
calcination process takes place. During that CaCO3 disassembles to CaO and CO2 which
causes that particles become porous. Sulphur dioxide passes through those pores and
reacts with CaO making CaSO4. Because of larger molar volume of CaSO4, previously
made pores are blocked which prevents total usage of CaO. As consequence, it is usual
that more limestone is added to the combustion chamber than it is theoretically needed.

Consequently, harmful flue gas emissions containing sulphur oxides are a result of the
complex burning phenomena and the individual construction of the plant in question. The
process operating conditions are an important and cost-effective way to affect these
emissions. To be able to optimize the plant operation, neuro-fuzzy models described in
previous sections are considered for prediction of the SO2 emissions based on the values
of the most influential (changeable, i.e. adjustable) parameters.

4. MODEL INPUTS/OUTPUT AND EXPERIMENTAL TRAINING DATA

Input signals for SO2 flue gas content model were selected based on a priori
knowledge on the conditions affecting the formation and reduction of sulphur-dioxide in
FB combustion process, which are briefly described in the previous section.

First model input is selected to be molar ratio Ca/S. This ratio is in practical operation
of FBC experimentally nearoptimaly determined, and is always selected as greater than
one since, as it is explained above, desulphurization is improved when more limestone is
added in the combustion bed than theoretically needed.
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Fig. 2.  Schematic representation of laboratory experimental FBs

Second considered model input is bed temperature, denoted as θ. Below optimal
temperature porosity of CaO is decreasing since calcination of limestone is substantially
smaller. On higher temperatures intense sintering occurs, pores are closed and
desulphurization is also decreased. Thus, influence of bed temperature on flue gas SO2
content is wast.

Besides the basic model version with two inputs, another approach with two additional
inputs has also been tested. There, excess air ratio λ is the third (alternative) model input.
Excess air does not influence desulphurization process directly, but it has indirect positive
effect. Fourth (alternative) model input is selected to be fluidization velocity v0. When
fluidization velocity increases, time of contact of SO2 and limestone particles decreases,
so desulphurization is lowered.

It is assumed that geometrical parameters of the FB plant cannot be changed, as well
as fuel type or limestone quality and limestone particle size, so those influential
parameters were not considered as possible model inputs. Model output is percent of SO2

removal from flue gas, denoted as ηSO2.
Experimental data used in this paper originate from several previous researches

concerning FBC, conducted at the Thermal engineering department of the Mechanical
Engineering faculty in Niš [14][15][16]. For example, some data sets used in these
experiments were measured from a laboratory FBC plant, of circular cross section with
120 mm diameter, 1500 mm height and 20 kW power (Fig. 2a). During experiments oil
shales were used as fuel. Signals were measured with a frequency of 1 Hz, and the process
was operated changing the values of parameters.

A sample of obtained measurement data is shown in Fig 3. Concentration of SO2 was
directly measured and then recalculated as percent of SO2 removal from flue gas, which
was used as training data for model output.
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Fig 3.  A set of experimental data used for training of neuro-fuzzy model

5. METHODOLOGY AND OBTAINED RESULTS

Several versions of the ANFIS model structures, such as described in section 2, were
considered. First, versions with two (Ca/S, θ) and four inputs  (Ca/S, θ, λ, v0) were tested,
while model output was ηSO2 in all considered cases. One realized approach with four
inputs is shown in Fig 4.

Fig. 4.  ANFIS network with 4 inputs and 14 rules

Partitioning of input spaces, i.e. selection of number of primary fuzzy sets for each
input variable is nontrivial task, along with determination of type of membership
functions to be used. Increase of number of primary fuzzy sets leads to exponential
growth of number of parameters that need to be adapted during training, and also
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decreases interpretability of the obtained result. Two approaches were considered: first,
partitioning based on expert process knowledge, and second based on fuzzy subtractive
clustering. As mentioned in the introduction, it is a fast, one pass algorithm for estimating
the number of clusters and the cluster centers in the set of data [3]. This methodology was
combined with Gaussian membership functions.

Also, interpretability of the obtained results was issue of the significant interest.
Beside the fact that qualitative knowledge about the process was used along with
available numerical data thanks to applied neuro-fuzzy modeling approach, obtained
results after training can also be transformed into easily understandable information. For
example in Fig. 5 output surface for fuzzy model with two inputs and modest number of
primary fuzzy sets with Gaussian membership functions, after training, is presented. It is
obvious that some theoretical knowledge can be confirmed from such results, as the fact
that there is optimal bed temperature which provides for  maximal SO2 removal, after
which further increase degrades SO2 removal process, and so on. Also, rules with trained
optimal parameters can be arranged in readable form thus providing easily understandable
conclusions that were extracted from data by the model [10].

Fig. 5. Output surface for fuzzy model with two inputs and modest number
of primary fuzzy sets after training

The possibility to perform multicriteria optimization of the obtained models by
applying genetic algorithms in order to achieve increased accuracy and/or interpretability
of the models has been also tested. For this purpose genetic algorithms with real coding
have been used [9].

6. INTELLIGENT CONTROL OF FBC DESULPHURIZATION

Developed computationally intelligent models are intended to be used as aproximators
for determination of optimal process parameters in relation to SO2 removal from flue
gases. Models are to be integrated in FBC boiler's control system at supervisory level, and
have the task of estimating parameters for basic control loops. Optimization of emissions
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demands compromises between different aims, and proposed models provide inputs for
the optimization cost function which defines optimal balance between plant's thermal
efficiency and emissions.

Beside described usage, following the ideas from [7][8] developed models can be
integrated in an expert system, which advises plant operators when limits for NOx, SO2,
and CO emissions are reached and helps to stabilize burning conditions. Such a system
provides easy access to the knowledge concerning emissions and helps operators to act
quickly and efficiently, while effects of actions can be clearly seen. Such a system can be
used not only in plant operation, but also for training. Its structure is shown in Fig. 6.

Fig. 6  Expert system for monitoring emissions in FBC boiler plant

The main power of the proposed approach lies in centralized aquisition of all sources
of information about the process, whether they origin from the operators' experience,
theoretical knowldge about the process or measured data. Expert system can also
potentially be based on computational intelligence, i.e. it can also be fuzzy.

Fig. 7  Dynamic fuzzy model of the SO2 emission with FBC
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Beside proposed static models of the emission of SO2 in boilers with FBC,
identification of dynamic fuzzy models for the sake of application in the framework of
adaptive control of FBC process has been considered as potentially feasible concept.

For dynamic modelling of the emission widely used strategy of external dynamics has
been applied. This concept allows for the efficient application of fuzzy models that
represent static approximators for modeling of dynamic systems, which has application in
control systems as its final aim. Term "external dynamics" originates from the fact that
nonlinear dynamic model can be divided into two parts: nonlinear static approximator and
external bank of delay elements. Fig. 7 shows the extension of the basic idea of static
modelling to a dynamic version of a model.

7. CONCLUSIONS

Modeling problem that was studied in the paper originates from the fluidized bed
combustion process, specifically models for the flue gas SO2 content were identified using
soft computing models. ANFIS networks were capable of capturing the nonlinearities in
process data, the training was efficient and prediction accuracy of the obtained models is
good. That goes along with other features, such as interpretability of the models,
acquisition of all sources of information on the process, etc.

Concisely recapitulated, triple usage of the developed computationally intelligent
models of the emissions in FBC has been proposed for intelligent control of FBC boilers:

− application of static fuzzy models of emissions in order to provide for input values
for optimization criteria, on the basis of which reference values for basic control
loops are calculated;

− application of static fuzzy models in expert system that has the task of centralized
treatment of information on harmful gaseous emissions and also to provide
recommendations to plant operators;

− application of dynamic fuzzy models of emission and their inverses for design of
control in the framework of adaptive fuzzy control with internal model and fuzzy
predictive control.

Based on the studies reported in this paper, some interesting directions for future
research can be pointed out. A good initial fuzzy partitioning of the input and output spaces
is a strongly nontrivial task, and the possibility of using other fuzzy clustering techniques
beside applied subtractive clustering, is also interesting, along with application of available
expert knowledge about the process. Also, more efficient learning methods for ANFIS
network can possibly be applied, and genetic optimization can be further explored.
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MODELIRANJE I UPRAVLJANJE EMISIJOM DIMNIH
GASOVA KOD PROCESA SFS PRIMENOM RAČUNARSKE

INTELIGENCIJE

Žarko Ćojbašić, Ljubica Ćojbašić, Vlastimir Nikolić,
Nenad Radojković, Mića Vukić

U ovom radu razmatran je neuro-fazi pristup modeliranju procesa sagorevanja u fluidizovanom
sloju i inteligentno upravljanje zasnovano na korišćenju razvijenih modela. Primenjena adaptivna
neuro-fazi struktura modela omogućuje efikasno kombinovanje dostupnih ekspertskih znanja o
procesu sa raspoloživim eksperimentalnim podacima. Na osnovu kvalitativnih informacija o procesu
odsumporavanja razvijeni su modeli emisije SO2 kod sagorevanja u fluidizovanom sloju, koji su zatim
optimalno podešeni korišćenjem merenih podataka. Ostvareni rezultati pokazuju da se takav pristup
može uspešno primeniti u cilju ekonomične i efikasne redukcije emisije SO2 kod SFS estimacijom
optimalnih parametara procesa, odnosno projektovanjem inteligentnog upravljanja na osnovu
definisanih modela emisije.


