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Abstract. Singular systems are those the dynamics of which are governed by a mixture
of algebraic and differential equations. The complex nature of singular systems causes
many difficultes in the analytical and numerical treatment of such systems, particularly
when there is a need for their control. In that sense the question of their uniqueness
and existence of solution, solvability, question of consistent initial conditions and
stability deserves great attention. A brief survey of the results concerning the stability
of a particular autonomous class of these systems, in the sense of Lyapunov, are
presented as the basis for their high quality dynamical investigation.
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1. INTRODUCTION

Singular systems are those the dynamics of which are governed by a mixture of
algebraic and differential equations.In that sense the algebrac equations represent the
constraints to the solution of the differential part.

These systems are also known as descriptor, semi-state and generalized systems arise
naturally as a linear approximation of systems models, or linear system models in many
applications such as electrical networks, aircraft dynamics, neutral delay systems,
chemical, thermal and diffusion processes, large-scale systems, interconnected systems,
economics, optimization problems, feedback systems, robotics, biology, etc.
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2. POSSIBILITIES OF DYNAMICAL ANALYSIS OF LINEAR SINGULAR SYSTEMS

Consider linear singular systems represented, by:
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with the matrix E possibly singular, where x(t) ∈ Rn is a generalized state-space vector
and u(t) ∈ Rm is a control variable.

Matrices A, B and C are of the appropriate dimensions and are defined over the field
of real numbers.

System given by eq. (1) is operatinig in a free and system given by eq. (2) is operating
in a forced regime, i.e. some external force is applied on it. It should be stressed that, in
the general case, the initial conditions for an autonomus and a system operating in the
forced regime need not be the same.

In order to investigate the stability of irregular singular systems, the folowing suitable
canonical form, i.e.:

)()()( 22111 tAtAt xxx += , (3a)
0 = )()( 2413 tAtA xx + . (3b)

can be, also, used.
System models of this form have some important advantages in comparison with

models in the normal form, e.g. when E = I and an appropriate discussion can be found
in Bajic (1992) and Debeljkovic et al. (1996, 1996a, 1998).

The complex nature of singular systems causes many difficultes in analytical and
numerical treatment that do not appear when systems in the normal form are considered.
In this sense questions of existence, solvability, uniqueness, and smothness are present
which must be solved in satisfactory manner. A short and concise, acceptable and
understandable explanation of all these questions may be found in the paper of Lazarevic
et al. (2001).

The survey of updated results for singular systems and a broad bibliography can be
found in Bajic(1992), Campbell (1980, 1982), Lewis (1986, 1987), Debeljkovic et al.
(1996.a, 1996.b, 1998) and in the two special issues of the journal Circuits, Systems and
Signal Procesing (1986, 1989).

The complex nature of singular systems causes many difficulties in numerical
analytical treatment of such systems that do not appear when systems in the normal form
are concerned.

The existence (solvability), uniqueness and smoothness of solutions of singular
systems, as well as their possible canonical forms, are the questions that must be carefully
treated.

They significantly differ from those established for the normal systems.
In that sense, our primarily task is, before discussing any questions concerning

stability problems for this class of systems, to indicate and demonstrate these problems
clearly dispatched on the Fig. 1.1.
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Singular linear systems

Regular SLS
det (cE - A) ≠ 0

Irregular SLS
det (cE - A) ≡ 0

Solution always exists
and is unique

No
solutions

"Smooth"
solutions

Nonunique
solutions

Finite number
of solutions

Infinite number
of solutions

Impulsive
solutions

Fig.1 Types of singular systems

2.1 Solvability

According to the Fig. 1., the singular system is regular, when the matrix pencil (cE –A)
is regular, i.e.

∃c ∈ R: det (cE – A) ≠ 0, (4)

and then solutions of (1) exist, they are unique and for so-called consistent initial
conditions1 generate smooth solutions.

Moreover, the closed form of these solution is known, Campbell (1980, 1982), Dai
(1989.b).

The regularity condition (4) form the system given by (3) reduces to the following:
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which is equivalent to:
,0 ))(det()(det 2

1
3341 ≠−−−− − AAsIAAAsI  (6)

or:
,0))((detdet 3

1
4214 ≠−− − AAAAsIA  (7)

Bender, Laub (1987.b).
Instead of (4), one can verify the following condition, Campbell (1980).

ℵ(A) ∩ ℵ(E) = {0}, (8)

                                                          
1 To be explained in following section.
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i.e. ℵ(A) and ℵ(E) have only the trivial intersection where ℵ(⋅) denotes the null space or
kernel of matrix (⋅).

Owens and Debeljkovic (1985) showed that (8) is equivalent with:

Wk* ∩ ℵ(E) = {0}, (9)

Wk* being subspace of consistent initial conditions.
It should be noted that condition (4) guarantees (8) and (9), but vice versa must not be

true.
Alternative characterizations of regularity condition offered by other authors are also

presented.
Shuffle algorithm, proposed by Luenberger (1978) is very suitable one and consists

only a few steps in order to determine existence and uniqueness of solutions.
If the matrix A4 is nonsingular (that is, it is regular), the system is solvable.
The familiar conditions were also proposed by Yip and Sincovec (1981).
The following expressions are equivalent:
a) The matrix pencil (E A) is regular.
b) Let X0 = ℵ(A), Xi = {x: Ax ∈ Exi–1},  (10)

then:
ℵ(E) ∩ Xi = {0}, ∀i = 0, 1, ... (11)

c) Let Y0 = ℵ(AT) Yi = {x: Ax ∈ Eyi–1},  (12)
then:

ℵ(ET) ∩ Yi = {0}, ∀i = 0, 1, ...  (13)

d) Matrix Matrix
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has full row rank for n = 1, 2, ... . has full column rank for n = 1, 2,...

Applying one of the presented criteria, one can easily get an answer to the question
whether the singular system is solvable or not.

2.2 Consistent initial conditions

Having in mind the possible implicit character of equation (1), with respect to )(tx , it
is obvious, that not all initial conditions are permissible.

The problem of consistent initial conditions is not characteristic for the systems in the
normal form, but it is basic one for the singular systems.
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We will say that an initial condition x0 ∈ Rn is consistent if there exist a differentiable,
continuous solution of (1).

The solution x(t) should be differentiable a finite number of times and it is real
analytic on interval t ≥ 0.

Discussion and generation of consistent initial conditions were treated by several
authors. Some of these, most important, results are presented here.

Campbell (1980) showed that x0 is a consistent initial condition for (2.1) if and only if:

,)ˆˆ( 0 0x =− DEEI  (15)
or, in equivalent notation:

,)ˆˆ(*
D

k EEIW −ℵ=  (16)

where DÊ is the Drazin inverse of matrix Ê and .)(ˆ 1EAcEE −−=
The fundamental geometric tool in the characterization of the subspace of consistent

initial conditions is the subspace sequence:

W0 ∈ Rn,
 (17)

Wj+1 = A–1 (EWj), j ≥ 0,

where A–1(⋅) denotes the inverse image of (⋅) under the operator A, and ℵ(⋅) and ℜ(⋅)
stands for null space and range of any operator (⋅), respectively.

If k* is the smallest such integer with this property, then:

Wk ∩ ℵ(E) = {0}, k ≥ k*, (18)

provided that (cE – A) is invertible for some c ∈ R.
The proof and other detail can be found in Lemma, Owens, Debeljkovic (1985) and

are omitted for the sake of brevity.
Consider now the manifold, M ⊆ Rn, determined by (3) as:

M = ℵ([A3 A4]), (19)

For the singular system governed by (3) the set of the consistent initial values is equal
to the manifold, or in the other words x0 has to satisfy:

x0 ∈ M ≡ ℵ([A3 A4]) ≡ Wk*  (20)

Obviously the determination of linear manifold M requires no additional computations,
except those necessary to convert (1) into the form (3).

Assuming that the rank A4 = r ≤ n2, it is clear, on the basis of equation (3), that (n1 + n2
– r) components of the vector x0 can be chosen arbitrarily to active no impulsive solutions
of the system governed by (1).

The use of nonconsistent initial conditions leads to impulsive solutions of (1),
Verghese et al (1981).
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3. STABILITY IN THE SENSE OF LYAPUNOV

Stability plays a central role in the theory of systems and control engineering.There
are different kinds of stability problems that arise in the study of dynamic systems, such as
Lyapunov stability, finite time stabilty, practical stability, technical stabilty and BIBO
stability. The first part of this section is concerned with the stability of the equlibrium
points in the sense of Lyapunov stability of linear autonomous singular systems. As we
treat the linear systems this is equivalent to the study of the stabilty of the systems.

The Lyapunov direct method is well exposed in a number of very well known
references. Here we present some different and interesting approaches to this problem,
including the contributions of the authors of this paper.

Stability definitions

Definition 1. Eq.(1) is exponentially stable if one can find two positive constants α, β
such that for every solution of (1), tett β−α≤ )()( 0xx , Pandolfi (1980).

Definition 2. The system given by (1) will be termed asymptotically stable iff, for all
consistent initial conditions 0x , x(t) ∞→→ tas0 , Owens, Debeljkovic (1985).

Definition 3. We call system given by (1) asymptotically stable if all roots of det (sE -
A), i.e. all finite eigenvalues of this matrix pencil, are in the open left - half complex
plane, and system under consideration is impulsive free if there is no 0x  such that x(t)
exibits discontinuous behavior in the free regime, Lewis (1986).

Definition 4. The system given by (1) is called asymptotically stable iff all finite
eigenvalues iλ , i = 1, …, 1n , of the matrix pencil (λE −A) have negative parts, Muller
(1993).

Definition 5. The equilibrium x = 0 of system given by (1) is said to be stable if for
every ε > 0, and for any 0t ∈ J, there exists a δ = δ(ε, 0t ) > 0, such that || x(t, 0t , 0x )|| < ε
hold for all t ≥ 0t , whenever 0x ∈ Wk and || 0x || < δ, where J denotes time interval such
that J = [t0,+∞), t0 ≥ 0, Chen, Liu (1997).

Definition 6. The equilibrium x = 0 of a system given by (1) is said to be unstable if
there exist a ε > 0, and 0t ∈ J, for any δ > 0, such that there exists a t* ≥ 0t , for which

||x(t*, 0t , 0x )|| ≥ ε holds, although 0x ∈ Wk and || 0x || < δ, Chen, Liu (1997).

Definition 7. The equilibrium x = 0 of a system given by (1) is said to be attractive if
for every 0t ∈ J, there exists an η = η( 0t ) > 0, such that 

∞→t
lim x(t, 0t , 0x ) = 0, whenever

0x ∈ Wk and || 0x ||< η, Chen, Liu (1997).

Definition 8. The equilibrium x = 0 of a singular system given by (1) is said to be
asymptotically stable if it is stable and attractive, Chen, Liu (1997).
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Lemma 1. The equilibrium x = 0 of a linear singular system given by (1) is asymptoti-
cally stable if and only if it is impulsive-free, and σ(E,A) ⊂ C-, Chen, Liu (1997).

Lemma 2. The equilibrium x = 0 of a system given by (1) is asymptotically stable if
and only if it is impulsive-free, and 

∞→t
lim x(t) = 0, Chen, Liu (1997).

Stability theorems

Theorem 1. System (1), with A = I, I  being the identity matrix, is exponentially
stable if and only if the eigenvalues of E have non positive real parts, Pandolfi (1980). 

Theorem 2. Let IΩ be the matrix which represents the operator on Rn which is the
identity on Ω and the zero operator on Λ.

System (1), with A = I, is stable if an n×n matrix P exist, which is the solution of the
matrix equation:

TE P+ PE = − ΩI , (21)
with the following properties:

P = TP , (22)

Pq = 0, q ∈ Λ, (23)
Tq Pq > 0, q ≠ 0, q∈Ω, (24)

where:
 Ω = )( D

k EEIW −ℵ= , (25)

Λ= )( DEEℵ , (26)

where Wk is the subspace of consistent intial conditions.
ℵ denotes the kerrnel or null space of the matrix ( ), Pandolfi (1980). 

Theorem 3. The system (1) is asymptotically stable if and only if:
a) A is invertible and
b) a positive-definite, self-adjoint operator P on Rn exist, such that:

      c) PAEPEA TT +  = − Q (27)

where Q is self-adjoint and positive in the sense that:

)()( tQtT xx >0 for all x∈ ∗kW \{0}, (28)

Owens, Debeljkovic (1985). 

Theorem 4. The system given by Eq. (1) is asymptotically stable if and only if:
a) A is invertible and
b) a positive-definite, self-adjoint operator P exist, such that:

)(tTx ( PAEPEA TT + ) )(tx = )()( tItT xx− , for all x∈ ∗kW  (29)

Owens, Debeljkovic (1985). 
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Theorem 5. Let (E,A) be regular and (E,A,C) be observable. Then (E,A) is impulsive
free and asymptotically stable if and only if a positive definite solution P to:

0=++ CECEPAEPEA TTTT , (30)

exist and if 1P  and 2P  are two such solutions, then ,21 EPEEPE TT =  Lewis (1986). 

Theorem 6. If there are symmetric matrices P, Q satisfying:

PAEPEA TT + = −Q, (31)
and if:

x TT E PE x > 0 ∀x = 11yS  ≠ 0, (32)

x T Qx ≥ 0 ∀x = 11yS , (33)

then the system described by (1) is asymptotically stable if:

rank 






 −
QS

AsE
T
1

= n  ∀s∈C, (34)

and marginally stable if the condition given by (34) does not hold, Muller (1993). 

Theorem 7. The equilibrium x = 0 of a system (1) is asymptotically stable, if an n × n
symmetric positive definite matrix P exist, such that along the solutions of system, (1), the
derivative of function V(Ex) = (Ex)TP(Ex), is a negative definite for the variates of Ex,
Chen, Liu (1997). 

Theorem 8. If an nxn symmetric, positive definite matrix P exists, such that along
with the solutions of system, (1), the derivative of the function V(Ex) = (Ex)T P(Ex) i.e.
V (Ex) is a positive definite for all variates of Ex, then the equilibrium x = 0 of the system
given by (1) is unstable, Chen, Liu (1997). 

Theorem 9. If an nxn symmetric, positive definite matrix P exists, such that along
with the solutions of system, (1), the derivative of the function V(Ex) = (Ex)TP(Ex) i.e.
V (Ex) is negative semi definite for all variates of Ex, then the equilibrium x = 0 of the
system, given by (1), is stable, Chen, Liu (1997). 

Theorem 10. Let (E,A) be regular and (E,A,C) be impulse observable and finite
dynamics detectable. Then (E,A) is stable and impulse-free if and only if a solution (P,H)
to the generalized Lyapunov equations (GLE) exists.

0=++ CCAHPA TTT , (37)

0≥= PEEH TT , (38)
Takaba et al. (1995). 

Some assumptions and preliminaries are needed for further exposures.

Suppose that matrices E and A commute that is: EA = AE.
Then a real number λ exists such that AIE =−λ , otherwise, from the property of

regularity, one may multiply (2) by (λE − A)−1 so one can obtain the system that satisfy
the above assumption and keep the stability the same as the original system.
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It is well known that there always exists linear nonsingular transformation, with
invertible matrix T, such that system (2), can be put in the following form:

]}[   ][{][ 2121
11 AAdiagEEdiagTATTET =−− , (39)

where E1 is of full rank and E2 is a nilpotent matrix, satisfying:

0  ,0 1
22 =≠ +hh EE , 0≥h . (40)

In addition, it is evident:
222111 , IEAIEA −λ=−λ= . (41)

The system, (2), is equivalent to:

)()()( 11111 tBtAtE uxx += , (42a)

)()( 22222 tBtAE uxx += , (42b)

where ][ 21
TTT xxx = .

Lemma 3. The system, (1), is asymptotically stable if and only if the "slow" sub -
system, (42a) is asymptotically stable, Zhang et al. (1998a)

Lemma 4. 0x ≠1  is equivalent to 0x ≠+1hE , Zhang et al. (1998a).
Define Lyapunov function as:

xxx 111 )()( +++ = hThTh PEEEV , (43)

where: ∈> PP ,0  Rnxn satisfying: 0)( 1 >+ xhEV  if 0x ≠+1hE , when 0)0( =V .
Bearing in mind that EA = AE, one can obtain:

1111 )()()( ++++ −=+ hThhThhTTh WEEPAEEPEAE  (44)

where ∈> WW ,0 Rnxn.
(44) is said to be Lyapunov equation for a system given by (42).

Denote with:
rrankEAsE ==− 1)det(deg . (45)

Theorem 11. The system, given by (1), is asymptotically stable if and only if for any
matrix W > 0, (44) has a solution 0≥P  with a positive external exponent r, Zhang et al.
(1998a). 

Theorem 12. The system, given by (1), is asymptotically stable if and only if for any
given 0>W  the Lyapunov (44) has the solution 0>P , Zhang et al (1998a). 

It should be noted that the results of the preceeding theorems are very similar in some
way and are derived only for regular linear singular systems.

In order to investigate the stability of irregular singular systems, the folowing results
can be used, Bajic at al.(1992).

For this case, the linear singular system is used in the form (3) i.e.:
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Herewith, we examine the problem of the existence of solutions which converge toward
the origin of the systems phase-space for regular and irregular singular linear systems. By a
suitable nonsingular transformation, the original system is transformed to a convenient form.
This form of system equations enables development and easy application of Lyapunov's
diect method for the intended existence analysis for a subclass of solutions.

In the case when the existence of such solutions is established, an understimation of
the weak domain of the attraction of the origin is obtained on the basis of symmetric
positive definite solutions of a reduced order matrix Lyapunov equation.

The estimated weak domain of attraction consists of points of the phase space, which
generate at least one solution convergent to the origin.

Let as, before, the set of the consistent initial values of (3) be denoted by *kW . Also,
consider the manifold M ⊆ Rnxn (3b) as  M = ℵ([A3  A4]).

For the system governed by (3) the set *kW  of the consistent initial values is equal to
the manifold m, that is *kW = M .

It is easy to see, that the convergence of the solutions of system (1) and system (3),
toward the origin is an equivalent problem, since the proposed transformation is
nonsingular.

Thus, for the null solution of (3), the weak domain of attraction is going to be
estimated.

The weak domain of attraction of the null solution x(t) ≡ 0 of system (3) is defined by:

D
∆
= { ∈ℜ∈ 00 : xx n  m, ∃x(t, 0x ), 0xx →

∞→
||),(||lim 0t

t
}. (46)

The term weak is used because solutions of (3) need not to be unique, and thus for
every x0 ∈ D there may also exist solutions which do not converge toward the origin. In
our case D = M = *kW , and the weak domain of attraction may be thought of as the weak
global domain of attraction

Our task is to estimate the set D.
We will use LDM to obtain the underestimate D e  of the set D (i.e. D e ⊆ D).
Our development will not require the regularity condition of the matrix pencil (sE − A).
For the systems in the form of (3) the Lyapunov-like function can be selected as:

V(x(t)) = TT PPtPt =),()( 11 xx , (47)

where P will be assumed to be a positive definite and real matrix.

The total time derivative of V along the solutions of (3) is then:

V (x(t)) = ++ )())(( 1111 tPAPAt TT xx )()()()( 122221 tPAttPAt TTT xxxx + . (48)

A brief consideration of the attraction problem shows that if (48) is negative definite,
then for every 0x ∈ *kW  we have || )(1 tx ||→ 0 as t → ∞.

Then || )(2 tx ||→ 0 as t → ∞, for all those solutions for which the following connection
between )(1 tx  and )(2 tx  holds:
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)(2 tx = L )(1 tx , ∀t∈R. (49)

The main question is if the relation (49) can be established in a way so as not to
contradict the constraints. Since it is not possible for irregular singular linear system, then
we have to reformulate our task to establish the relation (49) so that it does not pose to
many addtional novel constraints to (3b).

In order to efficiently use this fact for the analysis of the attraction problem, we
introduce the following consideration that also proposes a construction of the matrix L.

Let (49) hold.
Assume that the rank condition:

rank [A3  A4] = rank A4 = r ≤ n2, (50)
is satisfied.

Then a matrix L exist, Tseng and Kokotovic (1988), being any solution of the matrix
equation:

0 = LAA 43 + , (51)

where 0 is a null matrix of dimensions the same as A3.
One can investigate in more detail the implications of the introduced equations. When

they hold, then all solutions of the system (3), which satisfy (49), are subject to algebraic
constraints:

Fx(t) = 







− IL
AA 43 x(t) = 0. (52)

Now (48) and (49) are employed to obtain:

V (x(t)) = ++ PLAAt TT ))((( 211x )())( 121 tLAAP x+ , (53)

which is a negative definite with respect to )(1 tx  if and only if:

PTΩ + PΩ = − Q,   Ω = LAA 21 + , (54)

where Q is real a symmetric positive definite matrix.

Theorem 13. Let the rank condition (50) hold and let rank F < n, where the matrix F
is defined in (52). Then, the underestimate De of the weak domain D of the attraction of
the null solution of system given by (3), is determinated by (46), providing (A1 + A2L) is a
Hurwitz matrix.

If De is not a singleton, then there are solutions of (3) different form null solution, x(t)
≡ 0, which converge toward the origin as time t → + ∞, Bajic et al. (1992). 
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4. NUMERICAL EXAMPLE

Example 4.1. For the given system:

1 0 0 0 1 0
0 0 0 ( ) 1 0 0 ( )
0 0 1 0 0 1

t t
   
   =   
   −   

x x .

dynamical analysis leads to:
1 0 0 0 1 0
0 0 0 , 1 0 0
0 0 1 0 0 1

E A
   
   = =   
   −   

.

and det E = 0 with det A = 1.

Solvability

Since matrix A is nonsingular one, pair (E, A) is regular, so system under
consideration is solvable.

Let us check this using other approaches.
Gantmacher (1977):

,1,0)1(
100

001
01

)(det −≠∧∈∀≠+−=
+

−
−

=− sRss
s

s
AsE

what means that (E, A) is regular. 
Campbell (1980)

Let λ = 0.
Matrix pair (E, A) is regular since det(λE + A) = det(A) = 1 ≠ 0. 

Yip, Sincovec (1981)

a) Null space of matrices E and A is given with:

,,
0
1
0

)( 2 RespanE ∈αα=












=ℵ

{ },)( 0=ℵ A

( ) { }0X A= ℵ = 0 ,

{ }
{ }

0

1: , 1, 2, ,

, 1, 2, .
i i

i

EX
X A EX i

X i
−

=
= ∈ ∀ =

= ∀ =

0
x x

0
since the condition:

,...,2,1,0     },{)( =∀=∩ℵ iXE i 0
is satisfied, system is solvable. 
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c) Since:
AAEE TT =∧=

so it follows:
( ) ( ), ( ) ( ),T TE E A Aℵ = ℵ ℵ = ℵ

and
i iY X= ,

so it is obvious that:
,...,2,1,0     },{)()( =∀=∩ℵ=∩ℵ iXEYE ii

T 0
and system is solvable.

d) Matrix:
( )

1 0 0 1 0 0
0 0 0 0 0 0
0 0 1 0 0 1

1
0 1 0 0 1 0
1 0 0 0 0 0
0 0 1 0 0 0

E
G

A

   
   
   
    = = →    

     
   
   

−      

,

has a full column rank.

e) Matrix: [ ]
1 0 0 0 1 0 1 0 0 0 0 0

(1) 0 0 0 1 0 0 0 0 0 1 0 0
0 0 1 0 0 1 0 0 1 0 0 0

F E A
   
   = = →   
   −   

,

has a full row rank.
»Shuffle« algoriham:

1 0 0 0 1 0
0 0 0 1 0 0
0 0 1 0 0 1

E A

−
interchanging of rows, leads to:

1 0 0 0 1 0
0 0 1 0 0 1
0 0 0 1 0 0

− ,

what should be:
1

2

T A
0 A

,

where matrix:
1 0 0
0 0 1

T
 

=  
 

,
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has full row rank, so the »shuffle« may be applied:
1 0 0 0 1 0
0 0 1 0 0 1
1 0 0 0 0 0

− .

Since the matrix on left is singular:
1 0 0
0 0 1 0
1 0 0

= ,

algorithm should be continued:
1 0 0 0 1 0
0 0 1 0 0 1
0 0 0 0 1 0

1 0 0 0 1 0
0 0 1 0 0 1
0 1 0 0 0 0

−
−

−
−

,

since, now matrix on the left is regular:

1 0 0
0 0 1 1
0 1 0

=
−

,

what ends the procedure and system is solvable.
Now, we transfer the system under consideration to normal canonical form:

1 0 0 0 0 1
0 1 0 0 1 0
0 0 0 1 0 0

   
   = −   
      

y y ,

where:

1 1

2 3

3 2

y x
y x
y x

   
   = =   
      

y .

where:

[ ]1 2 3 4

0 0 1
, , 1 0 ,  i 0

0 1 0
A A A A   = = = =   −   

.

Since the condition:

0)1())(det()det( 2
1

1341 ≠+−=−−−− − sAAsIAAAsI , ,

is fullfiled such that: 0)det(R 1 ≠−→∈∃ AsIs , system is solvable. 
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Consistent initial conditions

Campbell (1980):
Let λ = 0:

( )

( )

1 1

1 1

ˆ ,

0 0 0
ˆ 1 0 0 ,

0 0 1

A E A A A A I

E E A E A E AE

λ

λ

− −

− −

= + = =

 
 = + = = =  
 − 

since:

1

0 1 0
1 0 0
0 0 1

A A−

 
 = =  
 − 

.

Eigenvalues of matrix Ê are:
}1,0,0{)ˆ( −=σ E ,

so:
2

2

0 0 0 0 0 0
ˆ ˆ 1 0 0 0 0 0

0 0 1 0 0 1

DE E
   
   = − = − − =   
   −   

,  
0 0 0

ˆ ˆ 0 0 0
0 0 1

DEE
 
 =  
  

,

( )
1

0 2 1 2 3

3

1 0 0
ˆ ˆ 0 1 0 0, 0,

0 0 0

D

x
I EE x x x x

x

   
   − = = → = = ∈   
      

x 0 ,

ED being Drazin inverse of matrix E. 
The set of consistent initial conditions is given with:
















=−ℵ=

1
0
0

span)ˆˆ( D
k EEIW ,

or:
}R,0,0:R{ 321 ===∈= xxxW n

k x .
Owens, Debeljković (1985):
















































=

≥=

=
−

+

1
0
0

,
0
0
1

span

,1),(

R

0

1
1

3
0

EW

jEWAW

W

jj
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{ }

,
1
0
0

span

R,,0:R

1
0
0

,
0
0
1

span:R

}:R{)(

1

30102010
3

3

0
3

0
1

1
































=

∈==∈=
































































=∈=

∈∈== −

W

xxxx

A

EWAEWAW

x

xx

xx

)( 1
1

2 EWAW −= ,
















=

1
0
0

1 spanEW ,

Since: EW1 = EW0,
it is obvious that:

}R,0,0:R{ 321 ===∈=∗ xxxW n
k x , k* = 1.

If in any way the subset of initial conditions Wk* is known, solvabilty can be chaked
using the following expression:

( ) { }

( ) { }

, ,

0 0
span 0 span 1 , 1,

1 0

k

k

W E k k

W E k k

∗

∗

∩ℵ = ∀ ≥

      
      ∩ℵ = ∩ = ∀ ≥ =                  

0

0

with positive conclussion, Owens, Debeljkovic (1985). 
When the system is in its normal canonical form, consistent initial conditions can be

achived using:
3 10 4 20A A= +0 y y ,

under condition that the following relation is fullfiled:

rang [A3  A4] = rang [A4] .
Since:
rang [A3  A4] = [1  0  0] = 1 ≠

[ ] [ ] [ ] [ ]3 4 4rang rang 1 0 0 1 rang rang 0 0A A A= = ≠ = = ,
the before mentioned equation can not be used for this purpose. 

Equilibrium points

Since matrix A is nonsingular and the system under consideration is regular
equlibrium point x = 0, or ℵ(A) = {0} is unique one. 
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State space solution

Campbell (1980):
Let λ = 0.
Then:

















−
=+λ==+λ= −−

100
001
000

)(      ,)(ˆ 11 EAEEIAAEA ,

0 0 0
ˆ 0 0 0

0 0 1

DE
 
 =  
 − 

. 
0 0 0

ˆˆ 0 0 0
0 0 1

DE A
 
 − =  
  

,

so:

( )ˆˆ
1 0 0
0 1 0
0 0

DE At

t

e h t
e−

 
 =  
  

,

0 0

30

0
ˆ ˆ 0 ,D

kEE W
x

 
 = ∈ 
  

x x ,

and state space solution, for consistent initial conditions, is given with:

ˆˆ
0 0

30

0
ˆ ˆ( ) 0 ,

DE At D
k

t

t e EE W
e x−

 
 = = ∈ 
  

x x x .

The same result is achived by direct integration:

( )
( ) ( )

3 3 3 30

1 1 10

1 2 2 10

( ) ( ),
0 (1 ( )) ,

,

tx x x t e x h t
x x t h t x

x x x t t xδ

−= − → =
= → = −

= → = −

.

Using norms, one can get:

( ) ( )3 30 30 0,t t
kt x t e x e x W− −= = = ∈x x ,

( ) ( )3 30
0

, 0,
0,,

t

k

x t e x t
t W

t

− = >= ∉ =+∞
x x ,

what is dispitched on Fig. 1. under condition: R,0
0

30

30

0 ∈















= x

x
x .



D. LJ. DEBELJKOVIĆ, S. ANTONIĆ, N. YI-YONG, Q. L. ZHANG1178

0 1 2 3 4 5 6 7 8 9 10
0

0.2
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1
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j

t[s]

||x
||

||x(0)|| 

Fig. 1.

System stabilty

Pandoli (1980):
Since: det A = 1,

system can be transfered o the form:
)()(0 tItE xx = ,

where:

1
0E A E−=  = 0

0 1 0 1 0 0 0 0 0
1 0 0 0 0 0 1 0 0
0 0 1 0 0 1 0 0 1

E
     
     = =     
     − −     

.

σ(E0) = {0,0,−1},
so, the sysytem is exponentialy stable. 

Another approach is also used:

( )

( )

0
span 0 ,

1

1 0
span 0 , 1 ,

0 0

D

D

I EE

EE

 
 Ω = ℵ − =  
  

    
    Λ = ℵ =             

0 0 0
0 0 0
0 0 1

IΩ

 
 =  
  

,
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1 2 3 1 2 3

0 0 2 4 5 2 4 5

3 5 6 3 5 6

2 4 5 2 3

4 5

3 5 6 5 6

2 4 5 3

4 5

5 3 5 6

0 1 0 0 0 0
0 0 0 1 0 0
0 0 1 0 0 1

0
0 0 0 0

0

2
0

2

T

p p p p p p
E P PE p p p p p p

p p p p p p

p p p p p
p p

p p p p p

p p p p
p p

p p p p

       
       + = +       
       − −       

−   
   = + −   
   − − − −   

− 
= −
 − − − 

0 0 0
0 0 0 .
0 0 1

IΩ

 
  = − =  
  − 

Matrix P which satisfie this equation is given with:

1 0 0
0 0 0
0 0 1/ 2

p
P

 
 =  
  

,

where p1 is arbitry.
Obviously p1= 0, since then the following conditions are fullfiled:

0, ,
0 , ,

T

T

P P
P

P

=
= ∈ Λ

> ≠ ∈Ω

x x
x x x 0 x

and the system is stable, Pandolfi (1980). 

Owens, Debeljković (1985):
Matrix A is nonsingular, det A = 1.
Let:

11 12 13 11 12 13

12 22 23 12 22 23

13 23 33 13 23 33

,T T

p p p g g g
P p p p P G g g g G

p p p g g g

   
   = = = =   
      

,

11 12 13

12 22 23

13 23 33

11 12 13

12 22 23

13 23 33

12 11 23 13

11 13

23 13 13 33

0 1 0 1 0 0
1 0 0 0 0 0
0 0 1 0 0 1

1 0 0 0 1 0
0 0 0 1 0 0
0 0 1 0 0 1

2
0

2

T T

p p p
A PE E PA p p p

p p p

p p p
p p p
p p p

p p p p
p p

p p p p

     
     + =      
     −     
     
     +      
     −     

−
=

− −
.G

 
  = − 
  

It is obvious that g22 = 0.
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Let p12= p23= p13= 0, then matrix G is in the form:
12

12

33

0 0
0 0

0 0

g
G g

g

 
 =  
  

,

where: g22 = −p11 ≠0, g33 = 2p33 ≠0.

[ ]
12 1

2
1 2 3 12 2 12 1 2 33 3

33 3

0 0
0 0 2

0 0

T

g x
G x x x g x g x x g x

g x

   
   = = +   
      

x x .

Since:
{ }R,0,0:R 321 ∈==∈= xxxW n

k x ,
it follows:

{ }2
12 1 2 33 32 0, \T

kG g x x g x W= + > ∀ ∈x x x 0 .

so system is asymptotically stable on the subspace of consistent initial conditions. 

Lewis (1986):
( ) ( ) ( ) 1det 1 1 0Ef s sE A s s= − = − + → = − < .

Since 0det 4 =A , there is an impulsive solutions and conclussion is not evident.

Chen, Liu (1997)
.T T TA PE E PA E WE+ = −

Let:
11 12 13 11 12 13

12 22 23 12 22 23

13 23 33 13 23 33

,
p p p w w w

P p p p W w w w
p p p w w w

   
   = =   
      

,

and:
11 12 13

12 22 23

13 23 33

11 12 13

12 22 23

13 23 33

0 1 0 1 0 0
1 0 0 0 0 0
0 0 1 0 0 1

1 0 0 0 1 0
0 0 0 1 0 0
0 0 1 0 0 1

T T

p p p
A PE E PA p p p

p p p

p p p
p p p
p p p

     
     + =      
     −     

     
     + =     
     −     

12 23 12 11 13 12 11 23 13

11 13 11 13

13 33 23 13 33 23 13 13 33

0 2
0 0 0 0 0
0 2

p p p p p p p p p
p p p p
p p p p p p p p p

− −     
     = + =     
     − − − − −     

,

11 12 13 11 13

12 22 23

13 23 33 13 33

1 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0
0 0 1 0 0 1 0

T

w w w w w
E WE w w w

w w w w w

− −       
       − = − =       
       − −       

.
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If one addopt matrix W as:
11 13

22

13 33

0
0 0

0

w w
W w

w w

 
 =  
  

.

It is obvious taht matrix P should be:

12

12 22 23

23 33

0 0

0

p
P p p p

p p

 
 =  
  

.

Principal minors of matrix P are given with:
2 2

1 2 12 3 33 120, ,p p p∆ = ∆ = − ∆ = − .

It means that there no exist a positive definite symmetric matrix P, such that the sign
of time derivative of Lyapunov function ( ) ( ) ( )TV E E P E=x x x  can be determined for all

variates Ex.
Function V(Ex) can not be used for investigation of this system since the system has

an impulsive behaviour . 

Müller (1994):
Let us take matrices R and S like this choice:

1

2

0 0 1

0 1 0
1 0 0

R
R

R

 
   = =       

,

[ ]1 2

0 0 1 1 0 0 0 1 0
0 1 0 0 0 1 0 0 1 ,
1 0 0 0 1 0 1 0 0

S S S
    
    = = ⋅ =     
         

so one can get:
0 0 1 1 0 0 0 1 0 1 0 0
0 1 0 0 0 0 0 0 1 0 0 0
1 0 0 0 0 1 1 0 0 0 1 0

RES
       
       = =       
               ,
0 0 1 0 1 0 0 1 0 1 0 0
0 1 0 1 0 0 0 0 1 0 1 0
1 0 0 0 0 1 1 0 0 0 0 1

RAS
−       

       = =       
       −        ,

1
1

2
2

3

y

y
y

 
   = =       

y
y

y
,
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1 2
2

2 3
1

3 1

0 1 0
0 0 1
1 0 0

y y
S y y

y y

     
      = = = =                   

y
x y

y
,

so it is:

1 1 2

1 0 0 0
1, 1, , , 2

0 1 1 0n n kA I I N k
   

= − = = = =   
   

.

Let:
0 0 0
0 0 0
0 0 1

P
 
 =  
  

,

and:
0 0 0
0 0 0
0 0 2

T TA PE E PA G
 
 + = = − 
 − 

,

0 0 0
0 0 0
0 0 1

TE PE
 
 =  
  

, 
1 1 1

1

0 0
0 0
1

S y
y

   
   = =   
      

y ,

( ) ( ) [ ] 2
1 1 1 1 1 1 1 1

1

0 0 0 0
0 0 0 0 0 0 0, 0,

0 0 1

TT T TE PE S E PE S y y S
y

   
   = = ⋅ = > ∀ = ≠   
      

x x y y x y

( ) ( ) 2
1 1 1 1 1 1 12 0,TTG S G S y S= = ≥ ∀ =x x y y x y ,

so system is stable. 

Furthemore:

1

1 0 0 1 0
1 0 0 1 0 0

rang
0 0 1 0 0 0
0 0 2 0 0 2

T

s
sE A
S G s

− −   
   − − −     = →     + 
   
   

,

and matrix:

1
T

sE A
S G

− 
 
 

,

has full row rank R∈∀s , so system is asymptotically stable. 

Bajićet al (1992):
Since rank condition is not satisfied:

[ ] [ ] [ ] [ ]3 4 4rang rang 1 0 0 1 rang rang 0 0A A A= = ≠ = = ,

nothing can be done. 
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5. CONCLUSSION

To assure asymptotical stability for linear singular systems it is not enough only to
have the eigenvalues of matrix pair (E,A) in the left half complex plane, but also to
provide an impulse-free motion of the system under consideration.

Some different approaches have been shown in order to construct Lyapunov stability
theory for a particular class of linear singular systems operating in free and forced regimes.

A numerical example has been worked out in order to show all difficulties in applying
high level control system theory for all aspects of dynamical analysis of singular systems.

APPENDIX A - Ussual notations

With ℵ(F) and ℜ(F) we will denote the kernel (null space) and range on any operator
F, respectively, i.e.:

ℵ(F) ={x: Fx = 0, ∀ x∈Rn }, (A1)

ℜ(F) ={y∈ mℜ , y =Fx, x∈ Rn }, (A2)
with:

dim ℵ(F) + dim ℜ(F) = n . (A3)

APPENDIX B – Equilibrium points

Definition B1. Equilibrium n
r R∈x , of (1) is any state of the system under

consideration, for which the following condition is fulfilled:

x(t; t0, Exr) = xr ,   t ≥ t0 ,  (E1)
Antonic (2001).

Theorem B1. The state x = 0 is equilibrium point of system given by (1) if :

 Axr = 0,  (E2)
Antonic (2001).

Theorem B2. If the linear singular system (1) is regular e.g. det (sE – A) ≠ 0, then:

x = xr ,   ∀x ∈ ℵ(A) ∈ Wk  (E3) 

Wk being the subspace of consistent initial conditions, Antonic (2001).

Corollary B1. Under the conditions of Theorem B2, (E2) is then necessary and
sufficient condition in order that some state should be its equilibrium point, Antonic,
(2001).

So the null space of matrix A represents the set of all equilibrium points of (1).
It is obvious that there is no difference between conditions for linear singular and normal

systems, when the question of existence and uniqueness of equilibrium points is discussed.

Theorem B3. If the matrix A is nonsingular (det A ≠0) then the singular system (1) is
regular and its equilibrium xr = 0, is unique, Antonic (2001).

Theorem B4. State x = 0, is asymptotically stable if it is unique equilibrium point of
system (1), Antonic (2001).
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NEKI PRAKTIČNI ASPEKTI PRIMENE
TEORIJE LINEARNIH SINGULARNIH SISTEMA

D. Lj. Debeljković, S. Antonić, N. Yi-Yong, Q.L. Zhang

Dinamika linearnih singularnih sistema opisana je, u matematičkom smislu, kombinacijom
diferencijalnih i algebarskih jednačina. U tom smislu ove druge predstavljaju ograničenje na
rešavanje prvog dela sistema jednačina. Imajući tu činjenicu u vidu veliki broj novih, dodatnih
poteškoća u primeni postojećih rezultata prirodno se nameću. To se prvenstveno odnosi na pitanja
postojanja i jedinstvenosti rešenja ovako hidbridnog sistema jednačina, pitanja konzistentnih
(dozvoljenih) početnih uslova, imulsnog ponašanja i stabilnosti.

U radu je dat prikaz bazičnih pitanja kao i njihovih rešenja koja daju odgovor po pitanju
glavnih dinamičkih performansi ovih sistema sa posebnim osvrtom i akcentom na pitanja
stabilnosti u smislu Ljapunova. Prikazani su referentni rezultati savremene publicističke delatnosti
na tom planu a koji uključuju i rezultata samih autora.

Izloženi teorijski rezultati propraćeni su jednim eklatantnim primerom koji ukazuje i ujedno
objašnjava sve detalje vezane za njihovu neposrednu primenu.

Ključne reči: Singularni sistemi, regularni singularni sistemi, iregularni singularni sistemi, rešljivost,
konzistentni početni uslovi, Drazinova inverzija, stabilnost u smislu Ljapunova.


