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Abstract. This paper extends some of the basic results in the area of Lyapunov
(asymptotic) and finite time and practical stability to linear, discrete, time invariant
time-delay systems. New definitions have been established for the latter concept of
stability. Sufficient conditions for this type of stability, concerning the particular class
of linear discrete time-delay systems are derived.
 More over the generalization of some previous results, in the area of Lyapunov
stability for the same class of systems has been also established and proved.
 To the best knowledge of the authors, such results have not yet been reported.
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1. INTRODUCTION

The problem of investigation of time delay systems has been exploited over many
years. Time delay is very often encountered in various technical systems, such as electric,
pneumatic and hydraulic networks, chemical processes, long transmission lines, etc. The
existence of pure time lag, regardless if it is present in the control or/and the state, may
cause undesirable system transient response, or even instability. Consequently, the
problem of stability analysis for this class of systems has been one of the main interests
for many researchers. In general, the introduction of time delay factors makes the analysis
much more complicated.

In the existing stability criteria, mainly two ways of approach have been adopted.
Namely, one direction is to contrive the stability condition which does not include the

information on the delay, and the other is the method which takes it into account. The
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former case is often called the delay - independent criteria and generally provides simple
algebraic conditions.

Numerous reports have been published on this matter, with particular emphasis on the
application of Lyapunov's second method, or on using the concept of the matrix measure,
Lee and Diant (1981), Mori (1985), Mori et al. (1981), Hmamed (1986), Lee et al.
(1986)).

In real-life one is not only interested in system stability (e.g. in the sense of
Lyapunov), the bounds of system trajectories are also relevant. A system can be stable but
still completely useless because it has undesirable transient performances. Thus, it may be
useful to consider the stability of such systems with respect to certain subsets of state-
space which are defined a priori in a given problem. Besides that, it is of particular
significance to concern the behavior of the dynamical systems only over a finite time
interval.

These boundedness properties of system responses, i.e. the solution of system models,
are very important from the engineering point of view. Realizing this fact, numerous
definitions of the so-called technical and practical stability were introduced.

Roughly speaking, these definitions are essentially based on the predefined boundaries
for the perturbation of initial conditions and allowable perturbation of system response. In
the engineering applications of control systems, this fact becomes very important and
sometimes crucial, for the purpose of characterizing in advance, in quantitative manner,
possible deviations of system response.

Thus, the analysis of these particular boundedness properties of solutions is an
important step, which preceedes the design of control signals, when finite time or
practical stability control is concern.

Motivated by "the brief discussion" on practical stability in the monograph,La Salle,
Lefchet, (1961), Weiss and Infante (1965, 1967) have introduced various notations of
stability over a finite time interval for continuous-time systems and constant set trajectory
bounds. Further development of these results was due to many other authors Michel
(1970), Grujic (1971), Lashirer, Story (1972)).

Practical stability of simple and interconnected systems with respect to time-varying
subsets was considered in Michel (1970) and Grujic (1975).

A more general type of stability ("practical stability with settling time", practical
exponential stability, etc.) which includes many previous definitions of finite stability was
introduced and considered in Grujic (1971, 1975a, 1975b).

The concept of finite-time stability, called "final stability", was introduced in
Lashirer, Story (1972) and furtherly developed by Lam and Weiss (1974).

The further development of these results and the natural extension to the class of
linear continuous time delay systems was due to Nenadic et al. (1997), Debeljkovic et al.
(1997a).

The matrix measure approach was for the first time introduced in Debeljkovic et. al.
(1997b, c, d), in investigation of this type of systems as well as the approach based on
general application of the well known Bellman – Gronwall lemma, Lazarevic et al. (2000)
and for nonautonomous systems in Debeljkovic et al. (2000).

In the context of the practical stability for linear generalized state-space systems,
various results were first obtained in Debeljkovic, Owens (1985) and Owens, Debeljkovic
(1986).
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Analysis of nonlinear singular and implicit dynamic systems in terms of the generic
qualitative and quantitative concepts, which contain technical and practical stability types
as special cases, have been introduced and studied in Bajic (1988, 1992).

In this short overview, the results in the area of finite and practical stability were only
concerned for continuous time systems.

The results concerning Lyapunov stability are well documented in a number of known
references, thus for the sake of brevity are omitted here.

Here we examine two problems. The first one is searching for the sufficient conditions
that force the system trajectories to stay within the a priori given sets for the particular
class of linear discrete time-delay systems. The other problem is obtaining sufficient
conditions of asymptotic stability for the same class of systems.

2. NOTATION AND PRELIMINARIES

A linear, autonomous, multivariable discrete time-delay system can be represented by
the difference equation:

∑
=

−+=+
N

i

ikAkAk
1

10 )()()1( xxx , (1)

and with an associated function of initial state:

.....,....,2,1,0),()( Nhjjj −−−−=ϕ=x ,  (2)

The equation (1) is referred to as homogenous or the unforced state equation, x(k) is
the state vector, A0, and A1 are constant system matrices of appropriate dimensions, and
pure time delay is expressed by integers, h = 1, 2,....... N.

It is assumed that the equation (1) satisfies the adequate smoothnees requirements so
that it's solution exists and is unique and continuous with respect to k and initial data and
is bounded for all bounded values of its arguments.

Let nℜ  denote the state space of systems given by (1) and ||(⋅)|| Euclidean norm.
Solutions of (1), in general case, are denoted by:

)(),,( 00 kkk xxx ≡ . (3)

With NΚ  is denoted discrete-time interval, as a set of non - negative integers:

}:{ 00 NN kkkkk +≤≤=Κ . (4)

Quantity Nk  can be positive integer or symbol ∞+ , so that finite time stability and
practical stability can be treated simultaneously.

Let ℜ→ℜΚ n
N xV : , so that V(k,x) is bounded for and for which ||x|| is also bounded.

Define the total difference of V/k, x(k)/ along the trajectory of systems, given by (1),
with:

))(,())1(,1())(,( kkVkkVkkV xxx −++= . (5)
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For time-invariant sets it is assumed: S0 is a bounded, connected and open set. The closure
and boundary of S0 are denoted by ()S  and ∂S( ), respectively, so: )()()( \ SSS =∂ .

Let βS  be a given set of all allowable states of system for Nk Κ∈∀
Set Sα, Sα ⊂ Sβ denotes set of all allowable initial states.
Sets Sα and Sβ are a priori known.
λ( ) denotes the eigenvalues of matrix ( ).
Λ is the maximum eigenvalue.

3. MAIN RESULTS - FINITE AND PRACTICAL STABILITY

Stability definitions

Definition 1. The linear discrete time delay system (1), is finite time stable with respect
to })(,,,,{ 0 ⋅βα Mkk , β<α , +∈βα R, , if and only if:

α<)(kx , ∀ Nk −⋅⋅⋅−−= ,,2,1,0  (6)
implies:

β<)(kx , ∀ MKk ∈ , (7)
Aleksendric (2002).

Definition 2. The linear discrete time delay system (1), is finite time stable with respect to
})(,,,,{ ⋅βα NM , β<α , +∈βα R, , if and only if:

Nii ,,1,0,)( ⋅⋅⋅−=∀α<x , (8)
implies:

Mii ,,2,1,0,)( ⋅⋅⋅=∀β<x , (9)

Aleksendric (2002).

These Definitions are analogous to those presented for the first time in Debeljkovic et
al. (1997a) for continuous time delay systems.

Stability theorems

Theorem 1. A system (1), is finite time stable with respect to })(,,,,{ ⋅βα NM , β<α ,
+∈βα R, , if the following condition is satisfied:

 
∑

=

+

αβ<Φ N

i
iA

k

1

1

/)( , ∀ .,,1,0 Mk ⋅⋅⋅= , (10)

)(kΦ  being the greatest value on the finite time interval under consideration, Aleksendrić
(2002).
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Proof. The solution of (1) with initial function (2) can be expressed in terms of
fundamental matrix as it is written below:

)()(
)1()1()0()()( 1

NANk
Akkk

N −−Φ+
⋅⋅⋅+−−Φ+Φ=

x
xxx . (11)

)(kΦ  being the fundamental matrix of linear discrete – time delay system.
In accordance with the property of the norm, one can immediately write:
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 (12)

where the condition given by (8) has been used.

To obtain the final result, one has to use (10), so we can write:

.,,2,1,0

)1(
1

/)(
1

1

Mk

A
A

k
N

i
iN

i
i

⋅⋅⋅=∀

β<+⋅
+

αβ⋅α< ∑
∑ =

=

x
 (13)

what has to be proved. ■
These results are analogous to those, for the first time, presented in Debeljkovic et al.

(1997a) for continuous time delay systems.
When NiAi ....,1,0,0 =∀= , the problem is reduced to the case of ordinary linear

discrete time systems, Weiss, Lee (1971), Debeljkovic (2001, 2002).
Application of this Theorem is in some manner difficult, since one has to find

fundamental matrix )(kΦ .
In order to overcome this problem, the following discussion is presented.
The system (1) can be rewritten as:

)()1( kAk eqeqeq xx =+ . (14)
where:



















=

0....00
0..0..0
0..0..0

....10

n

n

n

Ni

eq

I
I

I
AAAA

A . (15)

is new high-dimenssion system matrix, with I being identity matrix.
Therefore, the necessary and sufficient condition for stabilty of the system (1) is that

the solutions of the characteristic equation of system (14):
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0)(det =− eqAzI , (16)
satisfies:

.1<z  (17)

But, to check (10), we only need to apply the following relation:
k
eqAk =Φ )( . (18)

In the sequel, we present another approach.

4. MAIN RESULTS – LYAPUNOV STABILITY

Theorem 2. A system (1) is asymptotically stable if the following condition is satisfied:

∑
=

<
N

i
iA

0

1 , (19)

Aleksendrić (2002).

Proof. Following the basic result, given in Januševski (1978).
The solution of (1) with the initial function (2) can be expressed in terms of

fundamental matrix as it is written below:

)()()0()()(
1

iAikkk
N

i
i −−Φ+Φ= ∑

=

xxx , (20)

If it is possible to establish the stability of (20) in the sense of Koepcke (1965), e.g.
that we have a progressively decreasing function ||x(k)|| as k tends infinity, then the rest of
the proof is straightforward.

Therefor, one can use the crucial fundamental matrix property:

)(

)()1()()1(

0

10

ikA

NkAkAkAk
N

i
i

N

−Φ=

−Φ+⋅⋅⋅+−Φ+Φ=+Φ

∑
=

 (21)

In accordance with the property of the norm, one can immediately write:

)()1(
0

ikAk
N

i
i −Φ⋅≤+Φ ∑

=

. (22)

Let us take ε=δ , such that kik ∀ε≤−Φ )( , and taking into consideration (19), it
is obvious that :

 ε≤−Φ<+Φ ∑
=

N

i

ikk
0

)()1( . (23)

Simple mathematical induction shows that the preceeding equation is satisfied for any
1),( >∀+ jjkx , so the stabilty in the very well known sense "" δ−ε  is proved.

The norm of )(kΦ  uniformly decreases as k increases. ■
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In the sequel, we shall present the further extension of the last result derived.
Namely, the matrix measure has been widely used in the literature when dealing with

stability of time delay systems,
The matrix measure µ for any matrix A ∈ CCCCn×n is defined as follows:

 
ε

−ε+=µ
→ε

∆ 1||||lim)(
0

AIA .  (24)

The matrix measure defined in (1) can be defined in three different ways, depending
on the norm utilized in its definitions.

 













+=µ ∑

≠
=

n

ki
i

ikkkk
aaA

1
1 ||)Re(max)( ,  (25)

 )*(max
2
1)(2 AAA ii

+λ=µ ,  (26)

Desoer, Vidyasagar (1975).

If A is real matrix, then:
))(Re()( max2 AA λ=µ ,  (27)

follows from (26) and when )(max Aλ=λ being, in general, complex if and only if
| λ | ≥ | λi |, i = 1, 2 ... n.

 













+=µ ∑

≠
=

∞

n

ik
k

kiiii
aaA

1

||)Re(max)( ,  (28)

Alstruey, De La Sen (1996).

Some other important features of matrix measure is cited below:

AA ≤µ )( , (29)

)()(Re AAi µ≤λ , (30)
Desoer, Vidyasagar (1975).

Moreover, it is very well known, that:

.,2,1,|)(|max)( niAA ii
=λ=ρ  (31)

ρ(A) being spectral radius of matrix A.

||||)( AA ≤ρ ,  (32)

Barnett and Story (1970), (A) and ||A|| being any matrix and any matrix norm, respectively.

Let us, again, consider the system described by the linear difference equation, (1-2).
Now we are in position to present the following results.



D. LJ. DEBELJKOVIĆ, M. ALEKSENDRIĆ, N. YI-YONG, Q. L. ZHANG1154

Theorem 3. The system (1-2) is asymptotically stable if the following condition is satisfied:
(i) Both matrices A0 and A1 are discrete stable
(ii) 1)()(Remax 10 <ρ+λ AAii

, (33)

Debeljkovic, Zhang, Nie (2002).

Theorem 4. The system (1-2) is asymptotically stable if the following condition is satisfied:
(i) Both matrices A0 and A1 are discrete stable

    (ii) 1)()( 1202 <µ+µ AA , (34)

Debeljkovic, Zhang, Nie (2002).

Theorem 5. The system (1-2) is asymptotically stable if the following condition is satisfied:
(i) Both matrices A0 and A1 are discrete stable

     (ii) 1)()(Remax 120 <µ+λ AAii
, (35)

Debeljkovic, Zhang, Nie (2002).

Proof. The proof can be obtained for all of given Theorems simultaneously.
In order to guarantee asymptotic stability, it is necessary, for both matrices A0 and A1

to be discrete stable matrices.
For this one should clarify (19).
It is obvious that:

1)()( 101202 <+<µ+µ AAAA , (36)
having in mind (29).

Using (27) and (30-32) conditions of Theorems 4 and 5 can be proved in the similar way.
For the sake of brevity these proofs are omitted here.
First term of inequality (33) is a special case of matrix measure, since A(⋅) ∈ nn×ℜ ,

and therefore (27) is valid.
If we rewrite (1-2) in the particular form:

)()()1( 10 ikAkAk −γ+=+ xx , (37a)

Nhjjj −−−−=ϕ= ....,....,2,1,0),()(x , (37b)

where γ > 0 is a small positive parameter, it is easy to show that results given, using
Theorems 3,4,5 gives less restrictive results in compare with the basic one, Theorem 2. his
can be easily seen from the given examples.

CONCLUSION

New definitions for the particular class of linear discrete time delay systems have been
established.

Delay - independent criteria in the form of sufficient conditions of finite time and
practical stability, were also derived. It should be pointed out the presence of pure time
delay in this systems can not endanger their absolute stability but it can influence only
their relative stability characteristics. A suitable example has been worked out to show
this effect, see Appendix A.
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To the best knowledge of authors such results have not been yet reported.
Moreover the generalization of some previous results, in the area of Lyapunov

stability for the same class of systems have been also established and proved.

APPENDIX A

Example A1. Assume that we have two scalar linear systems, given by:
a) ),(1,0)1( kxkx −=+
b) )(1,0)1( hkxkx −−=+ .
We are looking for the distribution of zeroes of theirs characteristic equations, increasing

the time delay h of system b from zero to N = 34.
Details are given below.
System a is linear discrete time system with eigenvalue λ = −0,1 and is obviously

stable.
System b is linear discrete time delay system :

),1(1,0)1( −−=+ kxkx
with the equivalent matrix:








 −
=

01
1,00

1eqA
.

and corresponding eigenvalues
}3162,0,3162,0{)( 1 jjAeq −+=λ .

If h = 2, then we have:
).2(1,0)1( −−=+ kxkx

with:

,
010
001

1,000

2















 −
=eqA

and:
}.4020,02321,0,4642,0{)( 2 jAeq ±−=λ

At the end lets take: h = N = 34.

dim Aeq = 35)1( =+⋅ Nn .

The results are shown in Table No. A1 and Fig. A1.

Table A1.

System Symbol
Without delay (+)
Delay h = 1 (◊)
Delay h = 2 (□)
Dealy h = N=34 (*)
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Fig. A1.

Example A2.
Let us consider a linear discrete time-delay system, given by the equation:

)1()()1( 10 −+=+ kAkAk xxx ,
where tha matrices are :

 







=

4,00
02,0

0A , 







=

4,012,0
1,01,0

1A .

For testing the asymptotic stability of the system, first we denote the eigenvalues:

400,00 =A  436,01 =A

}4,0;2,0{)( 0 =λ A ⇒ 4,0)(Remax 0 =λ Ai

}4357,0;0643,0{)( 1 =λ A 4357,0)( 1 =ρ⇒ A

18357,04357,04,0)()(Remax 10 <=+=ρ+λ AAi
i

The matrices are obviously discrete-stable, and since the second condition is also
satisfied the system is asymptoticly stable.

To prove the stability, we can examine the equivalent non-delayed system i.e. check
the eigenvalues of the matrix of the given discrete system:



















=







=

0010
0001
4,012,04,00
1,01,002,0

0
10

I
AA

Aeq .
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The eigenvalues are: λ(Aeq) = {0,383; −0,166; 0,881; −0,499}, so the system is
asymptotically stable.

Example A3.
Let us consider a linear discrete time-delay system, given by the equation:

)1()()1( 10 −+=+ kAkAk xxx ,
where the matrices are

 







−
−−

=
4,00
2,03,0

0A , 







−
−−

=
01,022,0
25,06,0

1A

For testing the asymptotic stability of the system, first we denote the eigenvalues:

476,00 =A  682,01 =A ,

}4,0;3,0{)( 0 −−=λ A  300,0)( 02 −=µ⇒ A ,

}0719,0;6819,0{)( 1 −−=λ A  072,0)( 12 −=µ⇒ A ,

13719,0)0719,0(3,0)()( 10 <−=−+−=µ+µ AA .

The matrices A0,A1 are obviously discrete-stable, and since the second condition,
Theorem 3, is also satisfied the system is asymptotically stable.

But it should be noted that the basic condition of Theorem 2,(19) is not satisfied. So
the simple conclusion is evident. Condition given by (34) is less restrictive than (19).

To prove the stability, we can examine the equivalent non-delayed system i.e. check
the eigenvalues of the matrix of given discrete system in this example:


















−−

−−−

=







=

0010
0001

01,022,04,00
25,06,02,03,0

0
10

I
AA

Aeq .

The eigenvalues are: λ(Aeq) = {−0,128 ± 0.819 j; −0,5692, 0,1252}, so the system is
asymptotically stable.

Example A4.
Let us consider a linear discrete time-delay system, given by the equation:

)1()()1( 10 −+=+ kAkAk xxx ,
with the matrices:








 −
=

09,037,0
1,02,0

0A , 







−

−
=

34,05,0
22,017,0

1A

For testing the asymptotic stability of the system, first we denote the eigenvalues:

422,00 =A  661,01 =A ,
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}1843,0145,0{)( 0 jA ±=λ .

}5974,0;0874,0{)( 1 −=λ A 5974,0)( 1 =µ⇒ A .

15974,0145,0)())(Re(max 10 <+=µ+λ AAi .

The matrices 10 , AA  are obviously discrete-stable, and since the second condition is
also satisfied the system is asymptotically stable.

But it should be noted that the basic condition of Theorem 2,(19) is not satisfied. So
the simple conclusion is evident. Condition given by (35) is less restrictive than (19).

To prove the stability, we can examine the equivalent non-delayed system i.e. check
the eigenvalues of the matrix of given discrete system:


















−

−−

=







=

0010
0001
34,05,009,037,0
22,017,01,02,0

0
10

I
AA

Aeq .

The eigenvalues are: λ(Aeq) = {−0,358 ± 0.101 j; 0,613 ± 0,146 j}, so the system is
asymptotically stable.
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LJAPUNOVSKA I NELJAPUNOVSKA STABILNOST
LINEARNIH DISKRETNIH SISTEMA

SA ČISTIM VREMENSKIM KAŠNJENJEM

D. Lj. Debeljković, M. Aleksendrić, N. Yi-Yong, Q.L. Zhang

Prvi deo rada bavi se daljim proširenjem koncepata neljapunovske stabilnosti na klasu linearnih
diskretnih sistema sa čistim vremenskim kašnjenjem u stanju a za njihov rad u slobodnom radnom
režimu. Izvedeni su samo dovoljni uslovi stabilnosti, koji su sa inženjersko – tehničke tačke gledišta,
sasvim prihvatljivi i u analizi i sintezi razmatranih sistema.

U drugom delu radu iznosi se uopštenje poznatog kriterijuma za ispitivanje asimptotske
stabilnosti posebne klase linearnih autonomnih diskretnih sistema sa čistim vremenskim kašnjenjem u
stanju. Dovoljni uslovi stabilnosti izvedeni su u vremenskom domenu za razliku od bazičnog rezultata
koji je ovu problematiku razmatrao u kompleksnom domenu i pružaju mogućnost za brzo i efikasno
testiranje ova važne osobine svakog sistema automatskog upravljanja.

Pažljivo odabranim numeričkim primerom, ilustrovan je glavni i originalni doprinos ovog rada.

Ključne reči: linearni diskretni sistemi sa kašnjenjem, ljapunovska stabilnost,
neljapunovska stabilnost, metode prostora stanja


