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Abstract. The modelling of crane driving mechanisms i.e. non-linear model
characteristics is shown in the paper. Crane mechanisms can be described as elasto-
kinetic models with a final number of concentrated masses and elastic bonds between
them. Gap as the main reason of non-linearity is being linearized and described as
partial-linear characteristic. The other model parameters, the elastic bond rigidity,
damping, reduced mass models inertia moments, the shape of external disturbance
moment are non-linear but it is replaced with a greater number of linear functions that
provide analytical solving of the set differential movement equations. The results
received this way are very similar to the experimental recordings, which justifies the
linearization of the mentioned functions.

1. THE INTRODUCTION

Cranes contain different driving mechanisms that perform certain operations and
movements with an aim of replacing the load in space. These mechanisms can be sorted
out into four groups: for load lifting, for moving, for circular rotating and for the reach
change. To be able to do analysis we bring down mechanisms to certain dynamic models.
Nowadays, elasto-kinetic models with a final freedom degree movements and the elastic
bonds between masses are being used. The adequate results are received from two (Fig. 1)
or three reduced mass models with gap influence [1,3]. The external loads influence
model masses.

The moment of electro-motor starting in acceleration period or working brake moment
at the period of braking influence the first mass. Stationary movement resistance or safety
brake conceivably, load the driven mass. In the transient working regimes, i.e.
acceleration and braking periods, masses perform forced damped oscillatory movement.
Mathematic model is so the system of non-homogenous second order equations.
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The model characteristics that are

7
Cy non-linear are: the gap reduced to the
( (&; ‘ wanted shaft, reduced rigidity,
i damping and mass model inertia
b1 moments. The greatest influence on
t
¢,

0, non-linearity is done by the gap.

Fig. 1 Model of the crane mechanism with gap

2. THE GAP IN CRANE MECHANISMS

The circular gap is the functional follower of the cogwheel. The gap in the cogwheel
transmitters makes the major part of the mechanism gap. Multi-particle cylindrical cogwheel
transmitter with straight cogs can be shown in (Fig.2). We can assume that dynamic
processes at the transmitters aren't followed by the irregular harnessing and energy
dissipation i.e. a transmitter with a simple bonds is analyzed. The relation of the shaft and
each cogwheel bearing is maked with an elastic spring with two main rigidity directions [2].

Each cogwheel can be presented as a
dynamic subsystem with three degree
freedom, described with coordinates y,, ,
Zms Yms
where:

Vm > Zm - the inertia center position m
cogwheel,

¢, - the rotating angle of the m
cogwheel,

Wm= Tom P 3

For the dynamic system of the cogged
transmitter (Fig. 2) with elastic or simple
degree bonds, that are separated into sub-
systems, we define quasi-elastic bond
characteristic Fj.+1(8;), where &; repre-
sents one type function of the independ-
ent generalized cogwheel coordinates
(subsystems) in a hitch. Subsystems are
characterized by vectors of generalize
coordinates of U; order n; If we take
multi-degree cogged transmitter for the
elastic dynamic system, then each cog
represents a subsystem with three degree
freedom. Subsequently, each cog can be presented as a dynamic graph with three inde-
pendent oscillators and the cogged pair as a graph made of two cogs. Therefore, bond
equation is:

Fig. 2.  The pattern of the multi-cylindrical
transmitter with straight cogs

ﬁcz(yiazia\viask)zo (l)
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On the basis of previous the general form of differential movement equation of multi
(n) cylindrical transmitter can be written in a form:

0, U;+G,- U+ ¥1,-U; =0 )

Jj=n
where: U, = (y;,2;,¥,)" - is generalized cogwheel coordinates matrix,

©, =diag[m,,m,,J; - ;"] - is cogwheel inertia characteristics matrix,

G, =diag[c;,c;,0] - is cogwheel rigidity matrix.
To solve this equation system it is needed to do its linearization. Elastic bonds
characteristics can be, with great accuracy, presented in a linear form which suits the

quasi-elastic with a gap: Fj 1+1(8;) = & -6;. Then:

n—1 !

1 =28 T T =11 =[ﬁJ D =12,k =1,2,..m) 3)

=l au, | du,

Therefore, in equation (2) matrix G;+§& - T; represent characteristics of the local
elasticity of some subsystems within the general model (system), and matrix T}
characterizes the common structure of the mutual subsystem elastic bonds. It is known
that the dissipation of energy appears at work, which is particulary presented at multi-
degree transmitters. As the energy dissipation in the cogged transmitters characterized by
small damping coefficient values, the damping character of the separate cogs can also be
presented in linear resistance form.

Analogous to the conservative model (4), taking into consideration damping,
differential equations of the dissipative model movement multi (n) cylindrical transmitters
with straight cogs can be presented in the form of matrix-vector equations:

O.U; +BU; +GU; + (& EEH) +&i]:'1('i) Wi +& T, (?_I)UH +§i];f[i-i)—l Ui =0 “)

i1

where: B; = diag[b,,5,,0] - cog damping matrix.
Because of the non-linear cog

transmitters characteristics enforced

by the gap between two cogs, we use

the hitch pattern in the form of quasi-

elastic bond with partial char- "

acteristics Fj+1(6;) of elastic bond 1

with the gap type (Fig.3) for the 2

calculation. Therefore, 1 and 3 graphs .

of the elastic hitch characteristic 0 8

(kk+1) represent rigidity coefficient

&, and part 2 characterized with zero

coefficient value ;. The value 27y of 3 3o

the characteristic Fj.;(0;) represent

summary gap in hitch &, £+1.

A
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Fig. 3 Partial-linear characteristics of the cog gap
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The dynamic manifestation of different mechanic systems is studied in differential
coordinates. We can assume that the working point (k,k+1) hitch has coordinates &, ,
F,.%. ;. At the dynamic deformations (k,k+1) hitch the position P(i,j) of the shown points
of the characteristics in the moment of leap (transition from branch i to the j branch
characteristics) have the following values:

P(12)=P2) =3 ~F,)
P(23)=P(32) =0 - Fiy1) (5)
55{1) =Yko _51{0;55{2) =—Yr0 =90

Quasi-elastic bond has a partial-linear characteristics Fj;+1(J) that represent elastic
bond characteristics with a gap [2, 4] and the previous loads (Fig. 3):

€5, zad, >

Fria1(8r) = 1€ (V0 — 89)7ady) 2§, 2 5 (6)
28, vro + €40, zad; < 553)

1 2
where: 8" =y,0-8405 8 =740~ k0 :
&; - deformation k quasi-elastic bond in relation to its deformed state &y ;

2V - summary gap value.

Taking into consideration movement direction of the presented point, the leap
moments (5) we can focus controlling the values of changeable (differential) coordinates
8; =8, — 8,0, and its extract in time §; =, . In that case marking the expression P (i,) as
interparameter relation §, and §,, certain leaps an characteristics Fy;.1(6;) have the

following interrelation:
P (1,2)= (8,5, <0) P'(2,3)=(8{.5, <0);
P'(3,2)= (8.5, >0) P (2,))= (3.5, > 0);

At the non-linear oscillations analysis, extract control §, for movement direction
determining at the leap moment at the characteristic Fy ;. (8;) is rare. It appears if §,
coordinate values in the beginning of the current calculation step, coincide (with given
accuracy) with one of its leap values, in accordance with (5). In all other calculation
simulations the moment and the leap direction on Fy.;(8;) characteristic are determined
with comparative values §, in the beginning of the current calculation step and its leap
values in accordance with (5), that determines the current step of the working
characteristic calculation Fy j+; (8 ).

Non-linear dynamic model of the multi-cog transmitter in a complex form (4) model
can be described (i =1, 2, ... n):
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0, U, +B; U +G, U +viy,; & (T Uy + T U+

i—1,i

(i) 7@ (i) (7)
+v &7 Ui €, Ty - Up) = Z [A=v)H +1=v,; =) H]
Jj=i-1

d d
where: H 0 ——( /s ) g 8(1) H;’z) = ( i ) &, Vo - are disturbed functions.

Full number indices v;;, vy, (i=1, 2, ... , n—1), that organize the current structure of the
partial-linear model (7), are determined, depending on branches 1, 2 or 3 characteristic
F1+1 (8p) respectively:

* 1 1 * 2 * 2
Vi =Ly =08 > 8w =00, =187 28 287w =1vjp ==1(E; <& (8)

In the separate model on the concentrated masses, that are in respect to U;, U,

constant disturbances have influence H”,HY (j =i, i+1), that are determined by right

parts of i and i+1 differential system equation (7), when index v;;, v;, values correspond to
2 curve characteristic Fy ;. (8;). That model structure is kept until the following leap
moment of Fy ;. (8;) characteristic of one transmitter cogging, when a new model change
corresponding to the current structure indices value v;;, v;; comes.

The importantnon-linear model characteristics of the multi cog transmitter for the
numeric analysis are that boundary leaps in the number of characteristics Fj ;+1(8;), (i = 1
2, n-1), are described in relation to independent subsystems of linear second order
equations. Generally, at the numeric analysis of non-linear multi cylindric cogged
transmitters the sequence of leaps on the characteristic F};.(0;) and the current quasi-
linear model structure (7) of the transmitter can be determined on the basis of (8) rule of
structure indices.

Linearized dynamic model of the multi-cylindrical cogged transmitters with slope
coggs and simple bonds can be built in analogy with the mentioned approach for the
cylindrical cogged transmitters with straight cogs.

3. ELASTIC BONDS MODEL CHARACTERISTICS

The majority of reduced inertia characteristics at most driving mechanisms has a
constant value (inertia coefficient m; and J;). However, at mechanisms for reach change
that is realized by changing the elevation arrow angle at the rotating cranes, the positional
inertia arrow moment and the load is changed with distance square according to the crane
axe (m;1"). Therefore, the dynamic analysis of these mechanisms gets complicated. The
reduction of inertia characteristics, for translatory and rotation masses of the mechanisms
is done according to the expression:

2 2
Je=3|m{ 5| ws| 2 |=p| MR Lt )
i Or Or AR5 i;

The elastic bonds between the reduced masses are also characterized with rigidity
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coefficient and damping. Their form is non-linear and depends on the very mechanism
type.

The rigidity represents dependance between the load (force or moment) and the
provoked deformity (linear or angle). The rigidity characteristic can have linear or most
often non-linear stream. We can also differentiate progressive, degressive and combined
dependance (Fig. 4). In cases of load decrease need it is done by the help of degressive
element characteristic (for example elastic links with rubber elements). The progressive
characteristic can be found at load lifting mechanisms because of the steel rope, the
rigidity of which depends on its lenght and is changed at load lifting and landing. For the
practical calculations non-linear curves are changed with broken straight lines. The
element rigidity of crane mechanisms can be determined by experimental or analytical
method. For practical analysis rigidity coefficient is most often made constant. At the
dynamic modelling a reduction of rigidity coefficient values should be done at a certain
spot in the equivalent model. Depending on the complexity of the real system and its
bonds we can differentiate numerical, parallel and combined elastic bond hitch.

Q N 0 'y
progressive linear " anl

n=

degressive

n=3

:Aq

Fig. 4. The load change in deformation function  Fig. 5. The resistance change of the
viscosity friction

Damping depends on the type and material characteristic, character and load intensity,
deformity, speed, amplitude, frequency, temperature etc. This damping in mechanism
elements causes dissipative resistance i.e. influences the shortening of the lasting time and
the intensity of the oscillatory movement and load. The resistance can be the dry friction
resistance in proportion to the normal pressure and viscosity friction resistance in
proportion to the speed degree.

The dry friction resistance force or Coulomb slide friction force is:

Fy =1 Fy - (sign 4) (10)
where: L - friction coefficient,
Fy - normal force,

. +1 ¢>0
(sign ¢) =

| - multiplier that has opposite sign from speed direction.

The viscosity friction resistance (Fig. 5) is determined:
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0, =-b-Aq" - (sign ¢) an
where: b - damping coefficient,
Aq - relative movement speed,

n=20, 1, 3 respectively for constant, linear and non-linear damping resistance
change (Fig. 5).

In real oscillatory systems damping resistance usually act simultaneously and
practically, can't be differentiated. As some resistance have very small influence on the
damping process, the very influence of one dominant resistance to damping is often
considered at modelling. At the dynamic modelling only the influence of the dominant
damping resistance is being accepted, so at crane driving mechanism models the influence
of viscosity friction (n = 1) is most often considered for the acceleration and braking
period where in the slow down period after braking the dry friction resistance is
considered.

4. CRANE MECHANISMS WORK SIMULATIONS AND THE CONCLUSION

For the analysis of the dynamic behaviour of crane mechanisms an original computer
program for their work simulation is developed [1]. Non-linear elastic bond
characteristics are linearized as well as the external disturbances that influence model
masses. By Runge-Kutta method application differential equations are solved and certain
load dependances are got shown in the elastic bond torsion moment. The received
simulations greatly coincide with experimental recordings which confirms the adequacy
of the elasto-kinetic model at solvind of these problems and justification of model
characteristics linearization.

In (Fig. 6) experimental recordings of safety brake braking at load landing at one
redundant mechanism and also an adequate computer simulation. The coincidence of the
first several amplitudes of shaft torsion moment is evident, according to its values and
also the time of performance. The only difference is with the minimal value of the first
amplitude oscillation moment.
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Fig. 6 Shaft mechanism torsion moment change: a) experimental recording, b) simulation
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The great complexity and non-linearity of elastic bond characteristics of crane
mechanism models allows its linearization which accomplishes great simplification of
model equations [1,4]. The equations can be then got by direct integration (Laplace
transformations) or numerically. The received simulations coincide with the experimental
recordings which confirms the adequacy of the used methods.
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NELINEARNE ELASTICNE VEZE
U MODELIMA DIZALICNIH MEHANIZAMA

Sasa Markovi¢, Zoran Marinkovié¢

U radu je prikazano modeliranje dizalicnih mehanizama tj. predstavljanje nelinearnih
karakteristika modela. Dizalicne mehanizme svodimo na elasto-kineticke modele sa konacnim brojem
koncentrisanih masa i elasticnim vezama izmedju njih. Zazor kao glavni uzrok nelinearnosti se
linearizuje i svodi na parcijalno-linearnu karakteristiku. I ostali parametri modela, krutost elasticne
veze, prigusenje, momenti inercije redukovanih masa modela, oblik spoljasnjih poremecajnih funkcija
su nelinearnog oblika ali se zamenjuju ve¢im brojem linearnih funkcija koje omogucéavaju analiticko
resavanje postavijenih diferencijalnih jednacina kretanja. Tako dobijena resenja daju veoma bliske
rezultate sa eksperimentalnim zapisima ¢ime se opravdava linearizacija navedenih funkcija.



