Vol.1, No 8, 2001 pp. 981 - 988
UDC 621.43.019+52-46
MODELING OF NON-CONFINED TURBULENT
FLOW
OF TWO COAXIAL STREAMS
UNDER COMBUSTION CONDITIONS
Miroslav Sijerčić, Žarko Stevanović, Srdjan Belošević
Institute of Nuclear Sciences - Vinca, Laboratory for Thermal
Engineering and Energy
11001 Belgrade, P.O. Box 522, Yugoslavia
Abstract. The investigation of turbulence and combustion interaction
is most conveniently done in simple configurations where the influence
of various physical processes can be isolated and studied in details. This
paper deals with mathematical modeling of turbulent combustion and complements
the experimental research of methane flame occurring in two coaxial streams.
The geometry is two coaxial streams, where the inner one is the stoichiometric
mixture of the air and methane, and the outer one is the pure air, so the
premixed and diffusion combustion mechanisms coexist in the flow field.
This flow configuration is interesting for design of efficient combustors
that enable pollution reduction and energy savings.
Turbulent model for reactive flow field is based on the second-order
closures for Reynolds stresses and fluxes. Closure of the system of Reynolds
equations of momentum and continuity equation for stationary axial-symmetric
turbulent flow of incompressible fluid has been carried out based on the
solution of conservation equations for turbulent stresses and turbulence
kinetic energy dissipation rate The model encompasses conservation equations
of gas components participating in the process (CH4, O2, N2, CO2, H2O)
and energy equation. To deal with chemical reaction, conservation equations
of participating species in terms of mass fraction of species are solved.
The energy equation is solved in term of mixture enthalpy. The system of
equations has been closed by means of conservation equations for Reynolds
scalar fluxes scalar variance.
Combustion rate based on the chemical kinetic is obtained by the Arrhenius
relation, that is much greater than combustion rate in the real flame.
Because the time scale of the turbulence decay is typically much longer
than the chemical kinetic time scale, the reaction is controlled by turbulent
mixing. Since practically all of the combustion occurs after mixing between
the small scale dissipative eddies, we cannot go too far wrong by linking
the combustion rate to the turbulence decay rate by "Eddy-Break-Up" model.
According to this model, it was assumed that the combus-tion reactions
are controlled by the rate of turbu-lence pro-duction destruction, which
is characterized by the turbulence time scale of large eddies. In domain
of lower temperatures, the rate is controlled by the chemi-cal reaction
kinetics.
The comparison of the experimentally obtained and calculated parameters
of the flame flow field, such as U, V, T, , has been made. Turbulent
mass fluxes are also calculated but not compared with experimental
data..
MODELIRANJE SLOBODNOG TURBULENTNOG TOKA
DVE KOAKSIJALNE STRUJE U USLOVIMA SAGOREVANJA
Istraživanje interakcije turbulencije i sagorevanja se najčešće izvodi
u jednostavnim konfiguracijama gde se uticaj različitih fizičkih procesa
može izolovati i detaqno proučiti. Ovaj rad se bavi matematičkim modeliranjem
turbulentnog sagorevanja i dopunjuje eksperimentalno istraživanje metanskog
plamena koji nastaje pri strujanju dve koaksijalne struje fluida. Geometrija
obuhvata dve koaksijalne struje, gde unutrašnja predstavqa stehiometrijsku
mešavinu vazduha i metana, a spoqašnju čini samo vazduh, tako da u strujnom
poqu istovremeno postoje pojave karakteristične za sagorevanje u predmešanom
i difuzionom plamenu. Ovakva konfiguracija strujanja je interesantna za
projektovanje efikasnih gorionika, koji omogućavaju smanjenje zagađenja
i uštedu energije.
Primenjeni model turbulencije za strujno poqe sa hemijskim reakcijama
se zasniva na modelima drugog reda za Rejnoldsove napone i flukseve. Zatvaranje
sistema Rejnoldsovih jednačina količine kretanja i jednačine kontinuiteta
za stacionarno osnosimetrično turbulentno strujanje nekompresibilnog fluida
izvedeno je na bazi rešavanja jednačina održanja za turbulentne napone
( ) i disipaciju kinetičke energije turbulencije (?). Model obuhvata
i jednačine održanja gasovitih komponenti koje učestvuju u procesu (metan,
kiseonik, azot, ugqen-dioksid, vodena para) i jednačinu energije. Radi
uvođenja hemijskih reakcija u model, jednačine održanja učestvujućih hemijskih
komponenti se rešavaju u funkciji njihovih masenih udela. Jednačina
energije se rešava u funkciji entalpije smeše. Sistem jednačina se zatvara
pomoću jednačina održanja za Rejnoldsove skalarne flukseve ( ) i skalarnu
varijansu ( ).
Brzina sagorevanja bazirana na hemijskoj kinetici, dobija se iz Arenijusove
relacije i kao takva je mnogo veća od brzine sagorevanja u realnom plamenu.
Zbog toga što je vremenski razmer odumiranja turbulencije obično mnogo
duži od vremenskog razmera hemijske kinetike, reakcija je kontrolisana
turbulentnim mešanjem. Pošto se praktično celokupno sagorevanje odigrava
nakon mešanja između disipativnih vrtloga malih razmera, ne možemo mnogo
pogrešiti povezujući brzinu sagorevanja sa brzinom odumiranja turbulencije
pomoću modela drobqenja vrtloga. Prema ovom modelu, pretpostavqa se da
su reakcije sagorevanja kontrolisane brzinom destrukcije produkcije turbulencije,
koju karakteriše vremenski razmer turbulencije velikih vrtloga. U oblasti
nižih temperatura, ova brzina je kontrolisana kinetikom hemijske reakcije.
Izvedeno je poređenje eksperimentalno dobijenih i proračunatih parametara
strujnog poqa plamena, kao što su U, V, T, . Takođe su u ovom radu
proračunati i turbulentni maseni fluksevi.