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Abstract. The work deals with discrete elasto-kinetic model of finite mass number and 
its system of non-homogenous differential second order equations modelling 
successfuly crane driving mechanisms. Generally speaking the model parametres, i.e. 
inertia characteristics, elastic bonds (damping, rigidity and gap) and external impulses 
(electromotor, brakes, movement resistance etc.) are non-linear. It was proved that 
these characteristics in practical estimations are being linearized, i.e. changed with 
constant values or piecewise linear characteristics. By this for practical analysis and 
estimation cases there is no significant influence on results accuracy, which was 
confirmed by comparive certain simulations with experimental recording. 

1. THE INTRODUCTION 

Cranes as complex transport machines, in accordance with their application, construction 
and location, deal with not only the carrying structure and managing equipment but also a 
certain number crane mechanisms to be able to perform certain operations and movements 
for load space transfer. Basically, these mechanisms can be grouped into four groups: for 
load lifting, for translatory movement, for circular movement (rotation) and for the reach 
change. For the description and analysis of these mechanisms different models and certain 
approaches to their work simulation are being used, that also depend on the complexity and 
kinetic mechanism structure, research aims and the required accuracy of the obtained results. 
One of the aims of the research and crane driving mechanisms work analysis are movement 
rules of the specific masses and load change within the elastic bonds between the masses. 
One mechanism movement is usually being observed that consists of acceleration period, 
stagnant movement and braking. 

The adequate results in these analysis are given by the equivalent elasto-kinetic model 
with a finite number of discrete masses, elastic bonds between them and external 
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disturbances. As these masses in the transitional working regimes i.e. in acceleration and 
braking periods, perform forced oscillatory movement their abstract mathematic model 
represents a system of non-homogenous differential second order equations. 

In the work this type of model with its characteristics is analysed, where they are by 
the rule non-linear. It was shown that they can be linearized in practical estimations with 
an aim of a simplified and easier mathematic model, and at the same time not to influence 
the accuracy of the received results.   

2. ELASTO-KINETIC MODEL AND ITS CHARACTERISTICS 

Complex real crane driving mechanisms are by modelling being replaced with an 
equivalent model, that most often in the dynamic analysis represents an oscillatory chain 
with a finite number of discrete masses (fig. 1) [1]. This is an elasto-kinetic model with n 
mass known inertia characteristics (ai) and n-1 elastic bonds defined with damping 
characteristics (b1), rigidity (c1) and gap (∆zi). Certain masses are affected by external 
disturbances (Qsi) that derive from electromotor or brakes depending on the work regime 
within one movement (acceleration period, stagnant movement and braking) and on 
movement resistance. This type of model can be torsic, linear or mixed, which depends on 
whether it is consisted of only rotating, only translatory or both of the masses in 
accordance with the drive mechanism purpose and modelling purposes, i.e. research. 
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Fig. 1. Equivalent-oscillatory model with n degree freedom (unbound chain system)  

Modelling also involves setting of an abstract mathematic model for a mechanism 
movement as the masses are performing small forced damping oscillations in the 
transitional work regimes (acceleration and braking periods), the simplified mathematic 
simulation leads to the system of non-homogenous differential second order equations, 
presented in the matrix shape as [1]: 

 }{}{ |||| }{ |||| }{ |||| sQqcqbqa =⋅+⋅+⋅ &&& , (1) 
where: 
||a|| - the matrix of n × n size the inertia system characteristic, i.e. diagonal mass matrix 

and inertia translatory (mi) and rotative (Ji) mass moments,  
||b||    - the matrix n × n size the damping characteristics (linear bli and torsic bti),  
||c||    - the matrix rigidity characteristics (linear cli and torsic cti) analogue to the previous,  
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{Qs} - generalized external impulses vector, i.e. moments Mi and forces Fi, that derive from 
electromotor, brakr and movement resistance Qsi = f ( ϕ& ), Qsi = f (t) or Qsi = const.,  

}{,}{},{ qqq &&&  - generalized acceleration, speed and center mass positions (linear xi and torsic 
ϕi generalized coordinates) vectors.  

 

The majority of inertia characteristics at the crane driving mechanisms have a constant 
value (mi and Ji coefficient inertia). However with changing the elevation arrow inertia 
and load are decreased with the distance square in contrast to the crane axe (mi⋅r2). 
Therefore the dynamic analysis of these mechanisms is becoming greatly complicated. 

The characteristics of the elastic bonds between the concentrated masses, i.e. 
damping, rigidity and gap are charactarized with non-linearity. The damping-friction 
resistance (Qµi = Mµi or Qµi = Fµi) can be presented in fig. 2 and analytical descriptions 
depending on the relative speed, as [1]: 

 )( qsignqbQ n
ii && ⋅∆⋅−=µ , (2)  

where: 
bi -  is damping coefficient for i elastic bond, which is constant, 

q&∆ -  relative mass movement speed in between there is elastic bond, 
n -  exponent n = 0, 1, 3 for a constant, linear and non-linear change of damping resistance,  
sign q&  -  multiplier with +1 values when the speed is q& > 0 and −1 when q& < 0. 

In the analysis it is usually accepted that there are only resistance to viscose friction 
(in proportion to the speed n = 1) and that damping characteristic (coefficient bi) always 
has a constant value, i.e. qbQ i &∆⋅=µ . 

 
Fig. 2.  Resistance damping Fig. 3.  Broken  regressive Fig. 4.  Piecewise linear 
 (friction) change presentation  load change gap characteristic 

Rigidity characteristics c and gap ∆z of the elastic bond are characterized by extreme 
non-linearity. In order to get simple mathematic models (linear differential movement 
equation) these non-linear characteristics are represented by a few linear dependances, i.e. 
are replaced with a broken line (partial linear characteristic) as it is presented in fig. 3 and 4.  

Fig. 3 shows loads change Q in the elastic bond depending on the non-linear 
regressive (increasing) rigity characteristic (cj+1 > cj). However, this dependancy can be 
shown by a degressive (declining cj+1 < cj) characteristic. The influence of this two non-
linearity types of elastic bond to the load value and deformation is different. In the first 
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case with deformation increase load increases rapidly, where in the second the increse is 
slown to great extent. This fact can be used in cases of load decrease need by the 
application with degressive characterisric (for example elastic links wth rubber parts etc.). 
The first case could be founds at mechanisms for load lifting because of the steel rope, the 
rigity of which pepends on its cength that changes at load lifting and landing. The analytic 
load dependancy Q with known values of partial rigidity coefficient cj = const., according 
to fig. 3 is described in the following relation [1]: 

 )/1( 11 −− −+∆⋅= jjjj ccQqcQ  for   j = 1, 2, 3, ....   (Q0 = 0, c0 = 0). (3)  

Fig. 4 represents the load change Q in the elastic bond depending on gap ∆z (parctial-
linear characteristic), with an analytic descrition [1, 2]: 
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External disturbances have an extreme non-linear characteristic that originate from 
asynchronous electromotors (further motor) in the acceleration period, i.e. during its 
setting in drive until achieving stationary work regime. Figure 5 and 6 show these 
changes, respectively, for the sliding-ring motor that sets in drive with more lines by the 
help of resistors and in the electrical circuit of the rotator and the cage motor that is 
directly set in drive (a natural characteristic). These changes are given in angle function 
speed  (α = MM/MN = )(ϕ&f  or MN = )(ϕ&f ). In the first case the moment change is skipped 
(so called "saw diagram") which can be inconvenient from the aspect of element load of 
crane driving mechanisms and in the other it is continual. As it has been stated many 
times before, here is linearization done by the exchange of non-linear line parts of setting 
asynchronous motors with rectilinear segments. This is especially obvious at the last, fifth 
line of the sliding-ring motor (fig. 5) and the whole change of the cage motor (fig. 6) 
each, i.e. j segment with previously stated pictures is analytically described with line 
equation with two points, with known coordinates, such as  [1,2,3,4]: 
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  (5)   

where: 
jj ϕα &,   and 11, ++ ϕα jj &  - coordinates of the starting (j) and final (j+1) point on the  

j-line (segment), 
njjnMj MMk )/( ϕ∆α∆= &  - slope coefficient j line with ϕ&  - axe ( jjj α−α=α∆ +1 , 

jjj ϕ−ϕ=ϕ∆ + &&& 1 ),  

njMjjnMj MkMp )( ϕ−α= &  - segment of j line on nM MM=α  - axe,  
( nM  - the called motor moment). 
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Fig. 5. "Saw diagra" of the sliding  Fig. 6. The natural characteristic of the  

ring m otor cage m otor 

The development of the braking moment is most often modelled as a constant value. 
However, in these analysis temporal functions are being used i.e. exponential for 
electromagnetic brake and the limited function of the slope ascent for the hydraulic brake. 
Moreover, for the movement resistance some constant values are accepted. With this 
modelled brake influence and movement resistance, mathematic models are not 
significantly complicated and it is possible to get their solutions in a closed shape [1,2].  

3. TORSIC TWO MASS MODEL, MOVEMENT EQUATIONS AND SIMULATIONS  

The researches have shown that for determine and analysis of the element movement 
law  (discrete masses) and shaft load - elastic bonnds of the masses (Fig. 1) at crane driv-
ing mechanisms torsic elasto-cinetic model can be used successfully wth two deoree free-
dom movement (Fig. 7) [1,2,3,4]. It is reseived whenth  characteristics of the real system 

are reduced to thr drive  mechanism shaft 
on which torsion moment change is 
asked Mt = T(t) = f(t). Consists of drive 
mass with inertia moment J1 before the 
reduction spot, driven mass J2 behind the 
reduction spot and elastic bond 
(referential shaft) beween mass defined 
characteristis: rigidity c1, damping b1 and 
gap ϕz. The characteristics of the model 
are by the procedure linearized, i.e. these 
are constant values coefficients. Further-
more, by this model will be considered 
and simulated only the acceleration pe-
riod of the crane driving mechanisms wth 

asynchronous motors. The  matematic mass movement model under motor influence M1 = 
MM = ( ϕ& ) along the j-line (Fig. 5 and 6), to which movement resistance is opposed M2 = 
−MW = const., is [1,2,3,4]: 
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 Fig. 7.  Elasto-kinetic model with two masses 
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where beside the explained values: 
 

ijijij ,, ϕϕϕ &&&  -  generalized angle road coordinates, speed and acceleration of drive (i = 1) 
and driven (i = 2) mass for j - line the setting motor moment.   

The solution of the system from two plain non-homogenous linear differential second 
order equations for the known starting conditions gives the movement rules of each mass 
ϕ1j = f1j (t) and ϕ2j = f2j (t). However, as the change of the twisting moment of the elastic 
bond between masses Mt = T(t) = c1⋅(ϕ1 − ϕ2) = c1⋅∆ϕ (t), is being observed it is, by help 
of adequate transformation system to come to the following non-homogenous linear 
differential third order equation of deformation change ∆ϕ(t) = (ϕ1 − ϕ2) [1,2,3]: 
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This type of differential equations for (7) the known starting conditions can be solved 
in the closed shape by Laplac transformation method [1] or numeric Runge-Kutta method 
[2]. The general solution in the closed shape, i.e. the twisting moment change of the 
elastic bond (referentialshaft of the crane driving mechanism) Mtj = Tj(t) = c1⋅∆ϕj(t), at the 
motor moment development along j-line will be [1,2,3,4]: 
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where: 
M1j , M2j , M3j  - constant, that depend on the model characteristics, external spars and 
starting conditions [1], 
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ψ0j  - phase angle  and  t0j  - starting time. 

The received twisting moment change Mt = T(t) (8) consists of two parts:low and high-
frequency components. The first one is up to the middle value of the moment around 
which the second oscillates (the product e and cos function). Highfrequency component is 
harmonious change with the adequate overall damping β0j, that depends on the system 
damping b1, the setting motor line slope kMiMn and on the inertia moment of driven and 
drive mass i.e. from their relation (J2/J1). 

To learn the effect of the suggested linearization differential equation movement, espe-
cially the one that is applied at the setting moment of the asynchronous motor, an algorithm 
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is made and two computer programs for crane driving mechanisms simulation work is de-
veloped. One of the programmes takes the ready solutions of the moment in the closed shape 
(8) [1], and the other uses Runge-Kutta method [2] for solving a differential equation. 

Fig. 8 shows a parallel simulation and experimental recording of the twisting moment 
change of the referential shaft of a laboratory device in the acceleration period under the 
influence of the sliding-ring motor with five setting lines (fig. 5) [1,3]. Fig. 9, also shows 
this change at the output shaft of the crane mechanism for movement wth cage motor (fig. 
6) [1,4]. The first change is slopped, and the second is continual for the type of 
asynchronous motor. The comparison of simulations and experimental recording in both 
cases confirms its big coincidence, which is sufficient for practical application. By this it 
is justified and popularized the methodology of linearization of dynamic model 
characteristics (the asynchronous motor setting line).  

   
Fig. 8. Simulation and experimental recording of the twisting moment change  

Mt = T(t) of the referential shaft of a laboratory device in the acceleration 
period with sliding-ring motor [1,3] 

     
Fig. 9. Simulation and experimental recording of the twisting moment change Mt = T(t) of  the 

output shaft of the crane mechanism in the acceleration period with cage motor [1,4]  

  J1 = 27.35 kgm2 
  J2 = 62.50 kgm2 
  c1 = 24206 Nm 
  b1 = 14 Nms 
  ϕz = 0  rad 

  J1 = 0.143 kgm2 
  J2 = 1.104 kgm2 
  c1 = 27700 Nm 
  b1 = 2 Nms 
  ϕz = 0  rad 
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4.   CONCLUSION 

The basic conclusion is that complex elasto-kinetic model, that describes and simulates 
the work of crane driving mechanism, can be simplified by applying the procedure of 
linearization of its characteristics. This is especially valid for the impulses, i.e. in case of 
representing the asynchronous motor setting line by partial-linear characteristics.Justification 
and affirmation of this procedure is approved by appropriate simulation and experiments, 
whose accordance is great and satisfying for practical analysis and calculations. 
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LINEARIZACIJA I REŠAVANJE  
DIFERENCIJALNIH JEDNAČINA KRETANJA  

POGONSKIH MEHANIZAMA KRANOVA 

Zoran Marinković, Saša Marković, Dragan Marinković 

Rad se bavi diskretnim elasto-kinetičkim modelom sa konačnim brojem masa i sistemom 
nehomogenih diferencijalnih jednačina koje uspešno modelišu pogonske mehanizme kranova. 
Uopšteno govoreći parametri modela, tj. inercione karakteristike, elastične veze (prigušenja, 
krutosti i zazori) i spoljašni poremećaji (elektromotor, kočnice, otpora kretanju) su nelinearni. Iz 
tog razloga ove karakteristike treba da budu linearizovane ili zamenjene konstantnim vrednostima 
po intervalima (tzv. stepenasti ili "stepwise" profil). Time se omogućava rešavanje jednačina kao i 
analiza praktičnih situacija bez značajnije greške što je za neke slučajeve potvrđeno upoređenjem 
sa eksperimentom. 


