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Abstract. This paper presents a procedure of numerical method for kinematic synthesis of 
planar bar linkages in two or three infinitesimally close positions. The presented method 
has been used for resolving one practical case of mechanism for generating of prescribed 
function. The synthesis of mechanism is performed indirectly using inverse mechanism. 

1. INTRODUCTION 

The are three customary tasks for kinematic synthesis: motion, path and function 
generation. Motion generation or rigid body guidance (Fig. 1a) requires that an entire 
body be guided through a prescribed motion sequence. The body to be guided usually is a 
part of "floating link" (not directly connected to the fixed link). The corresponding input 
(driving) link motion may or may not be prescribed. 

In path generation (Fig. 1b) a point of a floating link is to trace a part defined with 
respect to the fixed frame of reference. If the path points are to be correlated with either 
time or input link positions, the task is called path generation with prescribed timing. 

In function generation (Fig. 1c) the motions of input and output (driven) link are 
correlated by the prescribed function. Since any real mechanism has a finite number of 
dimension parameters it is not possible in general to obtain a mathematical exact solution 
but that the mechanism match given function, path or body positions at only a finite 
number of positions called accuracy or precision points. Between these points generated 
(actual) function Φ(x) deviates from the given (prescribed) mathematical function F(x). 
Fig. 2a is a graph of arbitrary function y = F(x). The kinematic synthesis task may be to 
design a linkage to correlate input or output such that as the input link moves by x, the 
output link moves by y = F(x) for the range x0 < x < xn+1. Values of the independent 
parameter x1,x2,...,xn correspond to the prescribed accuracy points P1,P2,...,Pn on the 
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function F(x) for the range x. The subscript j indicates the j - th prescribed position of 
mechanism; the subscript 1 refers to the first or starting prescribed position. 

 
Fig. 1. 

Structural error is defined as the difference between the prescribed (ideal) function 
F(x) and actual function Φ(x) for a certain value of the input variable x (Fig. 2b) 

 )()( xxFy Φ−=∆   (1) 
Structural error for path genera-

tion may be defined as the vector 
from the ideal to the actual path. 
Substitution of prescribed function 
by similar (approximate) function is 
called approximation of function. 
There are three methods of ap-
proximation: first-order approxi-
mation or point approximation, 
higher-order or multiple point ap-
proximation and combined point-
order approximation. In first-order 
approximation, discrete points on 
the prescribed function are speci-
fied. The synthesised mechanism 
will generate a function (or path) 
that will coincide with the pre-
scribed function at accuracy points 
P1,P2,...,Pn (Fig. 2). Structural error 
at these points will be zero, that is  

 kjxxFy jj ,...,2,1,0)()( ==Φ−=∆   (2) 

In some cases a mechanism is desired to generate not only a position but also the 
velocity, acceleration shock, and so on, at one accuracy point. In that case prescribed and 
actual function must have higher-order of contact1. Two carves F(x) and Φ(x) have n-th 
order of contact if they coincide at n + 1 infinitesimally close points A1,A2,...,An+1 
                                                           
1 higher- order approximation of given function 

 
Fig. 2. 
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represented by one multiple accuracy point A. 
Two infinitesimally close points on the curve define the first derivative (velocity in 

Mechanics, slope of tangent in Mathematics), three infinitesimally close point define 
second-order derivative (acceleration or radius curvature), four points-third derivative 
(shock or rate of curvature change), and so on (see Fig. 3a). Regarding to this, the 
following conditions are to be fulfilled for a given multiple point A(xA,yA): 

 

)()(

)()(
)()(

)()(
A

n
A

n

AA

AA

xxF

xxF
xxF

Φ=

Φ′=′
Φ=

M
  (3) 

that is 

 

0)(

0)(
0)(

)( =∆

=′∆
=∆

A
n

A

A

xy

xy
xy

M
  (4) 

Moving away from multiple accuracy point, structural errors ∆y', ∆y",...,∆y(n) start to 
increase, slightly in the beginning and then rapidly (Fig. 3b). 

 
Fig. 3. 

The combination of both point and order approximations is called point-order 
approximation. For example one might desire to prescribed a position and velocity at the 
accuracy point, only a position at a second point, and a position and acceleration at a third 
point.  
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2. CURVATURE THEORY 

2.1. Osculating circle 

Consider a general curve σ (Fig. 4a) and point A0 on it. For finding the radius of 
curvature of σ at point A0, we take two points A−1 and A1 on either side of A0. The 
perpendicular bisectors of the secants A−1A0 and A0A1 (Fig. 4a) intersect at a point O. 
With O as the centre and OA0 as the radius we can always draw a circle passing through 
the 3(three) points A−1, A0 and A1. Now, let points A−1 and A1 approach point 
A0 = (∆σ = A−1A0 = A0A1 → 0). In the limiting case, the circle passing through three points 
as 0→∆σ is called circle of curvature or osculating circle. The radius of the 
osculating circle, ρ (Fig. 4b), is the radius of the curvature of curve σ at point A0 and the 
centre of the osculating circle, O, is the centre of curvature. Thus the osculating circle has 
contact with curve σ at three (at least) infinitesimally closed points. The vector oAO

r
 is 

called the radius vector of curvature at A0 and is designated by ρ
r . 

 
Fig. 4. 

2.2. Polodes 

Actual motion of a floating link with respect to the fixed (ground) link may (for 
analytical purposes) be replaced by the 
rolling motion of a moving polode against a 
fixed polode without sliding. The fixed 
polode pΣ is connected to ground link and is 
always stationary, while the moving polode 
pΠ may be thought of as being rigidly 
attached to the moving link. The polodes 
may have different shapes such as ones 
shown in Fig. 5. 

As the moving polode rolls on the fixed 
polode there is generally a single point of 
contact between them; this point is the 
instantaneous velocity pole P of the moving 
link with respect to ground. 

So-called "relative polodes" can be 
constructed for the motion of any two links 

 
Fig. 5. 
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with respect to each other, i.e. not just for motion of a floating link such as the coupler AB 
of a four-bar linkage with respect to ground, but also for follower OBB with respect to the 
input crank OAA.  

2.3. Pole velocity 

Fixed and moving polodes have one point in common, which is instantaneous pole P 
(Fig. 6). This is always the case, i.e., at any position of the moving plan Π associated with 
the floating link, so this common point travels in the fixed plane Σ along the fixed polade, 
and in the moving plane along the moving polode (Fig. 6a). The pole velocity u

r
 is the 

instantaneous velocity with which the instantaneous pole P shifts position. So, the pole 
velocity is not the velocity of any given point (or material particle) but instead expresses 
how the instantaneous pole shifts along the fixed polode pΣ. 

Since pole velocity along the fixed polode equals that along the moving polode, fixed 
and moving polode have a common tangent t at P at any point of time (Fig. 6b). This 
common tangent is called the pole tangent of the observed position. Positive sense of the 
pole-tangent t is always opposite with respect to sense of vector u

r
. 

 
Fig. 6. 

2.4.  Polodes for the relative motion of the cranks  
in a four-bar function generator 

For synthesis of functions generators (Fig. 1c) we regard the function generator as a 
special case of the guiding mechanism (Fig. 1a) using method of kinematic inversion 
about first position of input crank.  

To this end, the input crank 1, Fig. 7 is made stationary (becomes ground link), 
ground link 4 becomes input crank whereas output crank (follower) 3 becomes floating 
link (coupler). The motion of link 3 is then constrained by rolling contact between the 
polodes for the relative motion of the two cranks.  

Angular velocities of the inverted mechanism are  
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Fig. 7. 

Since point (pivot) C belongs to both of links 3 and 4 it is obviously 

 OCPCVc ⋅′ω=⋅′ω= 43   (6) 

Substituting equations (5) into equations (6) we have  

 OCPC ⋅ω−=⋅ω−ω 113 )(  

from which angular velocity ratio 
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and location of the pole 
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Introducing OC = ρC, OP = L we obtain 
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For the four-bar linkage constconst ≠ϕω=ω=ω )(, 231  so ).(ϕλ=λ Differentiating 

with respect to ϕ, the angular position of input crank 1, yields 
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According to Fig. 8 

 
Fig. 8. 
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Equating equations (10) and (11) we obtain the angle γ between a perpendicular to the 
fixed link OC and pole tangent t (or between the fixed link OC and pole normal n), Fig. 7 
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2.5. Inflection circle 

Generally, all paths generated by the points of the moving plane Π have a distinct 
radius and centre of curvature at every point of the path. 

We define an inflection point as a point of the plane Π, which at the moment is going 
through a point of inflection of its path. Such points will have infinite radius of curvature 
(ρ = ∞) and zero normal acceleration (aN = V2/ρ = 0). The path of every inflection point 
as a point of the moving plane has second-order contact (three infinitesimally close points 
contact) with its path circle of curvature or path osculating circle, which is of zero 
curvature (i.e., of infinite radius), in other words, it is a straight line, coincident with the 
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path tangent T (Fig. 9). This property of the inflection point is often used by designers to 
design path generators for tracing an approximate straight line with three infinitesimally 
close accuracy points. 

   
 Fig. 9. Fig. 10. 

The instantaneous locus of all inflection points in the moving plane Π is a circle of 
diameter D (Fig. 10) touching the pole tangent t at the instantaneous pole P. This circle is 
called the inflection circle. The point J, the intersection of the normal at P (pole normal) 
and the inflection circle is called the inflection pole. The second intersection of the line 
PA with the inflection circle is also the projection of PJ onto PA. We may then write  

 θ= cosDrJ   (13) 

where PJDPJrJ == , . 
Equation (13) is the scalar (polar) equation of the inflection circle. 

2.6. Euler – Savary equation  

Euler-Savary equation (ESE) allows exploitation of the properties of the inflection 
circle. Consider a plane Π moving with respect to a fixed plane Σ and let pΣ and pΠ be, 
respectively, the fixed and the moving polodes of the motion. 

In Fig. 11 consider the following four points 
on the path normal N: 

1. P, the instant pole 
2. A, an arbitrary point of the moving plane 
3. JA, the inflection point 
4. OA, the centre of curvature of the path of 

A, described in fixed plane. 

Also define the following three vectors all 
collinear with the line PA: 

AOJPrAPr AAAJ

rrrrrr
=ρ== ,,  

The ESE correlates these vectors and thus 
provides a way to find any one of the four points 

 
Fig. 11. 
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P,  A, AJ, and OA if the other three are known. 
The ESE may be derived in several ways. Here it is one very effective.  
The total acceleration of A  may be written as  

 TANAA aaa )()(
rrr

+=  (14) 
or as  
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Equating right sides of equation (14) and (15) we have  
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that is, in scalar notation 
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or 
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The numerator (PA)2 in equation (16) is always positive while denominator 
(PA − PJA) may be positive (PA > PJA) or negative (PA < PJA). Subsequently, the radius 
of curvature may have positive or negative sign. Equation (16) reveals the fact that OAA 
and JAA are always laid off in the same sense along the line PA (OA is always on the same 
side of A as JA - Fig. 12). 

 
Fig. 12. 
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Thus, when JA has been established, the sense of JAA gives the sense of OAA. 
We can avoid "rule of sign" if we use "sign proof" complex – number notation of ESE 
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To this end, the rectangular axes OΣx and OΣy fixed, in plane Σ are respectively 
considered as real (x) and imaginary (iy) axes, allowing vectors in planes Σ and Π to be 
expressed as complex numbers. A second form of ESE (see [3] for derivation) 
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is applicable when points P, A and OA are known and JA is sought. 
Complex-number form of ESE is well suited for automatic computation (without 

needing to use the "sign convention"). 

3. EXAMPLE 

A four-bar linkage is to be designed (synthesised) so that, in design position, with the 
input crank motion rotating clockwise at a constant angular velocity of 20 rad/s, the 
output crank (follower) will have an angular velocity of 15 rad/s, counter clockwise and 
angular acceleration of 200 rad/s2 counter clockwise. The distance between the crank 
pivots are 14 cm (Fig. E.1).  

Solution 
 sradt /20
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Function ψ = ψ(t) will have specified value of first and second-order derivative if 
graphs (curves) at the instant considered have the same radius of curvature (three 
infinitesimally close points in common). It means that four-bar linkage is required to be 
synthesised in three accuracy points.  
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 Fig. E.1 Fig. E.2. 

• Creation of the inverted mechanism 
In order to solve this problem we have to consider relative motion of the cranks, that 

is, the motion of the follower (output crank) with respect to the input crank. To this end 
we have to make input crank stationary (ω1 = 0), release the ground link OAOB and impose 
angular velocity ω0 = −ω1 to it. That way we obtain so called "inverted mechanism", 
Fig. E.2. Floating link of this mechanism (crank OBB) has instant angular velocity 
ω = ω2 − ω1. Points B, OB become moving pivots while points OAA are fixed pivots.  

• Instant velocity ratio 
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• Location of the instantaneous pole 
The point OB belongs to both link OAOB and OBB. The link OAOB rotates about OA 

whereas link OBB rotates about instantaneous pole P. According to clause 2.5 and 
equations (8) we have  
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Notice: If length of the ground link OAOB is not specified it can be assumed as OAOB = 1 
since all similar mechanisms generate the same function. 

• The slope of the pole tangent  
According to equations (12) and Fig. E.2 we have 
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We can now add the pole tangent to the layout. 
• Inflection point of BO  

Pivot OB of the inverted mechanism traces a circle with radius OAOB. Fixed pivot OA is 
the centre of curvature. According to equation (20) we have (see Fig. E.2) 
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• Diameter of the inflection circle 
According to equation (13) and Fig. E.2 
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Having the point J located, and knowing that the inflection circle is tangent to the pole 
tangent, we can add the inflection circle for the relative motion to the layout. 

• Choice of the moving pivot B 
Since mechanism is required to be synthesised at three infinitesimally close positions 

(three accuracy points) any point of the moving plane associated with the floating link 
may be adopted as the moving pivot because the path of every point has three 
infinitesimally close point in common with the circle (second - order contact) – path of 
the moving pivot. Let a point B has polar co-ordinates 
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• Inflection point of B 
According to 
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• Coupler link length  
The point A is centre of curvature (fixed pivot) of the point B. Radius curvature length 

AB is the length of coupler link of origin mechanism (Fig. E.1). According to equation (18)  
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• Length of the input crank 
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• Length of output crank (follower) 

 
cm 105,4)51285,07()85847,078(              

)sin()cos(

22

2
0

2
0

=⋅+⋅−=

α+α−== PBPBPOBOb BB  

• Angle of the input crank in the design position 
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CONCLUSION 

Exposed method for synthesis of planar bar linkages in infinitesimally close positions 
belongs to the approximate algebraically methods. The method provides good results 
when mechanism (input crank) has limited range of motion. It is established that structural 
error seldom exceeds 1% when input cranks rotates within 25%. 

As for the mechanisms for path generation, the method is applicable only if the 
mechanism is required to generate a segment of circle with specified radius of curvature, 
including segment of straight line.  

Synthesis in the infinitesimally close positions is not applicable to motion-generator 
mechanisms (rigid-body guidance). Mathematical model of synthesis doesn’t contains 
systems of non-linear equations requiring development of numerical methods for solution 
by computer. Of course, computer is an advantage but in this case all calculations can be 
made by the scientific calculator.  
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POSTUPAK SINTEZE RAVNIH POLUŽNIH MEHANIZAMA U 
BESKONAČNO BLISKIM POLOŽAJIMA 

Dragoljub Vujić, Slobodan Radojković 

Izložena je procedura numeričke metode za kinematičku sintezu ravnih polužnih mehanizama u 
dva i tri beskonačno bliska položaja. Prikazana metoda je iskorišćena za rešavanje jednog 
praktičnog slučaja mehanizma za generisanje zadate funkcije. Sinteza mehanizma je izvršena 
indirektno korišćenjem inverznog mehanizma. 


