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Abstract. In the calculation of wind-excited overhead transmission line with 
Stockbridge dampers the damper behavior is usually represented by its impedance 
corresponding to a vertical translatory damper clamp motion. The moments introduced 
by the damper into the cable are normally disregarded. In this paper the dampers are 
characterized by means of a 2 × 2 complex impedance matrix which can be 
experimentally determinated in the laboratory and which includes the effects of the 
rotatory motion of the clamp. The energy balance method is then adapted to this case 
and the bending strains in the cable are calculated at the dangerous points. It turns out 
that the moments introduced by the damper into the cable are of little or no importance 
with regard to the energy absorbed. They may however affect strongly the local 
bending strains in the cable at the damper clamp.  

1. INTRODUCTION 

Different types of mechanical vibrations occur in overhead lines and frequently lead to 
severe damage. In the present paper the aeolian vibrations are studied, which are usually 
observed in the frequency range 10-100 Hz, and may cause failure due to material fatigue. 
In this paper the energy balance for damped wind excited vibrations, and the power 
dissipated by the damper and the cable are considered. 

2. POWER DISSIPATED BY THE DAMPER 

The energy balance for steady state vibrations is shown through the equation: 

 CDw PPP +=   (1) 

Pw being the power of the aerodynamic forces, PD the power corresponding to the 
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dissipation of mechanical energy in the damper and PC the power of the material damping 
in the cable. 

The damper extracts mechanical energy from the cable at the isolated point x = l1, the 
wind forces act over the whole span, introducing power over the complete length of the 
cable. Mechanical energy has therefore to travel along the cable towards the point x = l1, 
where it is dissipated in the damper. The damping power is computed for the case of a 
simple harmonic wave travelling from the middle of the span towards the damper. To this 
incident wave corresponds a reflected wave travelling from the damper towards the 
middle of the span, as well as oscillations in the cable between the damper and the 
clamped end at x = 0. These oscillations are calculated by requiring the proper boundary 
conditions to be fulfilled, with account taken of the dynamic behavior of the damper. Of 
course the power dissipation by the damper depends strongly on the damper location l1. 

The wind excited vibrations of small amplitude are described by: 

 1       ),,(),( lxtwwdtxqwTwEIw IIIV ≠+=ρ+− &&&   (2) 

where EI is the bending stiffness of the cable, T is its tension, ρ is the mass per unit 
length, w(x,t) is the transverse displacement of the cable, q(x,t) is the wind force due to 
vortex shedding and d  is the material damping. The distance l1 from the damper to the 
fixed point is usually small with respect to the span l. Including the new dimensionless co-
ordinate z = 2π/λ = kx, normalized with respect to the wavelength and writing the 
solutions of equation (2) with q ≡ 0, d ≡ 0 in the form 

 ftzVtzUtxw /2         cos)(sin)(),( π=ωω+ω=   (3) 

one obtains, from equation (2) the ordinary differential equations: 
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with the abbreviations  
 TfaTEI /       /)2( 222222 ρλ=λπ=µ   (5) 

Since λ is supposed to be the wavelength corresponding to the frequency f, one of the 
roots of the characteristic equation corresponding to equations (4) has to be equal to 
unity, so that  

 22 1 µ+=a   (6) 

is the relation between frequency f and the wavelength λ. The general solution of 
equations (4) is 
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with BU, CU,...FU as integration constants and 2/11 µ+=p . The solution for the 
domain x ≥ l1 is written as 
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 tzVtzUtxw ω+ω= cos)(sin)(),( 11   (8) 
and for 0 ≤ x ≤ l1 
 tzVtzUtxw ω+ω= cos)(sin)(),( 22   (9) 

The solution for x → ∞ is given by the superposition of simple harmonic waves 
traveling in opposite directions, 
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At the point x = l1 the displacement w(l1,t) and the slope w'(l1,t) must be continuous: 
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The damper is a passive system, which can only dissipate and not generate mechanical 
energy, the mean power 
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must always be positive. In equation (11), F(t) and M(t) are the vertical force and a 
moment that damper clamp exerts on the cable, and )(ty&  and )(tϕ&  are the velocity and 
angular velocity of the damper clamp: 
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The coefficients Zij and αij, i,j = 1,2 define the impedance of the damper and can be 
experimentally determined. The dynamic characteristics of the damper could be 
completely described by the complex 2 × 2 impendance matrix: 
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with .2,1,     sin     cos =α=α= kjZIZR jkjkjkjkjkjk  

3. POWER OF THE AERODYNAMIC FORCES 

The power of the aerodynamic forces is calculated for the case of standing waves in an 
infinite cable, i.e. the distortion at the ends of the cable and near the damper were due to 
small bending stiffness disregarded in this calculation. Typically the length of the span is 
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about 500 m and the bending stiffness is so weak that these perturbations are not 
perceptible except at a very short distance from the end or from the damper respectively, 
so that these distortions do not introduce a measurable error in the calculated wind power 
Pw. Using experimental results due to reference [2] the following expression for the power 
of the aerodynamic forces could be given: 
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D being the diameter of the cable. The coefficients b can be computed from reference 2, and  
Dvcf s /=  

cs = 0.19, v being the wind velocity. 

4. MATERIAL AND STRUCTURAL DAMPING IN THE CABLE 

The material damping and structural damping in the cable has been investigated 
experimentally by several authors. Usually an expression of type: 
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β= 2  

is employed, where C2, m and n are constants which may vary from one author to another. 
It is assumed that m and n are constant for all cables and that C2 characterizes the 
damping properties of the particular cable being considered. The variable β = 2πA/λ is 
the angular amplitude, and P is the limit load of the cable. 

The material and structural damping in the cable is unimportant in transmission lines if 
dampers are used, 

CD PP ff  

5. CONCLUSION 

In the present paper the energy balance method in which account is taken of the 
location of the damper on the cable is generalized in such a way that not only the forces 
but also the moment transmitted by the damper clamp to the cable are included. To do 
this, one requires knowledge of a complex 2 × 2 impedance matrix for the damper instead 
of a single scalar complex impedance as used so far. The energy balance for steady state 
vibrations shown through the equation (1) can be adapted to the case of conductor 
equipped with Stockbridge dampers and the vibration amplitudes and the bending strains 
in the cable could be calculated at the dangerous points.  
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ENERGIJSKI BILANS ZA AMORTIZOVANE  
VETROM POBUĐENE VIBRACIJE 

Elizabeta Bahtovska 

Različiti tipovi mehaničkih vibracija nastaju kod žičara i često dovode do ozbiljnih oštećenja. 
U radu su izučavane eolske vibracije, koje imaju uobičajenu učestanost 10-100 Hz i koje mogu da 
dovedu do otkaza zbog zamora materijala. U ovom radu su razmatrani i energijski bilansi za 
amortizovane vetrom pobuđene vibracije kao i energija koju disipiraju amortizer i kabl. 


