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Ser. Math. Inform. Vol. 28, No 4 (2013), 417–428

POINT ESTIMATION OF CUBICALLY CONVERGENT ROOT FINDING
METHOD OF WEIERSTRASS’ TYPE ∗

Lidija Z. Rančić

Abstract. The aim of this paper is to state initial conditions for the safe and fast con-
vergence of the simultaneous method of Weierstrass’ type for finding simple zeros of
algebraic polynomial. This conditions are computationally verifiable and they depend
only on the available data - polynomial coefficients, its degree and initial approxima-
tions z(0)

1 , . . . , z
(0)
n to the zeros. It is shown that under the stated conditions, the proposed

iterative method is convergent.

1. Introduction

The problem of finding all zeros of a polynomial has always been very im-
portant issue in numerical analysis and applied scientific disciplines. The list of
publications concerning this topic is very extensive (see McNamee’s book [2]).
Iterative methods for the simultaneous determination of all zeros of polynomial
belong to the most efficient approaches. In connection with this, constructing com-
putationally verifiable initial conditions which provide both the guaranteed and
fast convergence of a numerical root-finding algorithm is of considerable practical
importance.

The aim of this paper is to establish initial conditions which guarantee the
convergence of an efficient third order method for the simultaneous approximation
of all simple zeros of a polynomial P(z) = zn + a1zn−1 + · · · + an−1z + an, (ai ∈ C). In
[6] the following method for finding simple roots of polynomial was proposed

ẑi = zi − P(zi)
P′(zi − 1

2 Wi)
,

where z1, . . . , zn are some approximations to the zeros ζ1, . . . , ζn and Wi is the Weier-
strass correction. defined in Section 2. The cubic convergence of this method was
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proved in [6] assuming that the initial approximations are good enough, but with-
out detailed quantitative convergence analysis with regard to the initial conditions.
Now, we study computationally verifiable initial conditions which depend only of
available data: initial approximations z(0)

1 , . . . , z
(0)
n to the zeros ζ1, . . . , ζn of a polyno-

mial P, its degree n and the polynomial coefficients a0, a1, . . . , an. Such an approach,
known as the theory of point estimation, was introduced by Smale in 1981 [9]. Many
authors have started their investigation in this field after another Smale’s funda-
mental work [10]. More details on the point estimation theory concerning iterative
methods for the simultaneous determination of polynomial zeros can be found in
[4], [8] and [11], and, particularly, in the book [3] and the references cited there.

In Section 2 we present the convergence theorem which provides very simple
verification of the convergence of a rather wide class of simultaneous iterative
methods and we apply this theorem in Section 3 to prove the guaranteed conver-
gence of the proposed method. In our convergence analysis we will estimate some
complex quantities using an elegant and fruitful approach by circular complex
arithmetic which deals with disks.

2. The third order method

For distinct complex numbers z1, . . . , zn and polynomial P(z) = zn+ a1zn−1+ · · ·+
an−1z + an let us define

Wi(z) =
P(z)

n∏
j=1
j�i

(z − zj)

, Wi =Wi(zi),

w = max
1≤i≤n

|Wi|, d = min
1≤i, j≤n

j�i

|zi − zj|.

Let us consider the iterative method

z(m+1)
i = z(m)

i −
P(z(m)

i )

P′
(
z(m)

i − 1
2 Wi(z

(m)
i )
) ,

where m denotes the m-th iterative step. For simplicity, we will omit sometimes the
iteration index m and denote quantities in the latter (m+1)-st iteration bŷ (“hat”),
that is

ẑi = zi − P(zi)

P′(zi − 1
2 Wi)

.(2.1)

In the sequel for q = 1, 2 we use the abbreviations

S1,i =

n∑
j=1
j�i

1
zi − 1

2 Wi − zj
, Gq,i =

n∑
j=1
j�i

Wj

(zi − 1
2 Wi − zj)q

.(2.2)
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Also, for the sums and products we will write

∑
j�i

and
∏
j�i

instead of
n∑

j=1
j�i

and
n∏

j=1
j�i

.

The Lagrange representation of the polynomial P is valid:

P(z) =Wi

∏
j�i

(z − zj) +
n∏

j=1

(z − zj)

⎛⎜⎜⎜⎜⎝
∑
j�1

Wj

z − zj
+ 1

⎞⎟⎟⎟⎟⎠.(2.3)

Applying logarithmic derivative to (2.3), we obtain

P′(z) = Wi

(∑
j�i

1
z − zj

)∏
j�i

(z − zj) +
n∑

j=1

1
z − zj

n∏
j=i

(z − zj)

⎛⎜⎜⎜⎜⎝∑
j�1

Wj

z − zj
+ 1

⎞⎟⎟⎟⎟⎠
+

n∏
j=1

(z − zj)
∑
j�i

−Wj

(z − zj)2 .

Putting z = zi− 1
2 Wi in the last relation and using the introduced abbreviations (2.2)

we find

P′
(
zi − 1

2 Wi

)
=
(
1 + G1,i +

1
2 Wi(S1,i + G2,i) − 1

2 WiS1,iG1,i

)∏
j�i(zi − 1

2 Wi − zj)

= (1 +Hi)
∏
j�i

(zi − 1
2 Wi − zj),

where
Hi = G1,i +

1
2

Wi(S1,i + G2,i) − 1
2

WiS1,iG1,i.(2.4)

Using the last equality and the introduced abbreviation (2.4), we can represent
the iterative method (2.1) in the form

ẑi = zi − Wi

1 +Hi
·
∏
j�i

(
1 +

1
2 Wi

zi − 1
2 Wi − zj

)
.(2.5)

This form of the considered method is more suitable for the convergence analysis
that we are about to perform in the sequel.

3. Convergence analysis

In this section we present the convergence analysis of the method (2.5) using the
approach based on Smale’s point estimation theory [10]. This approach, regarded
as a significant advance in the theory of iterative processes, states computationally
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verifiable initial convergence conditions that guarantee the convergence of the
considered methods. As mentioned in the introduction, in the case of algebraic
polynomials P(z) = zn + a1zn−1 + · · ·+ an−1z+ an it is assumed that initial conditions
depend only on the polynomial coefficients a1, . . . , an, the polynomial degree n and
the initial approximations z(0)

1 , . . . , z
(0)
n .

Before stating the main result concerned with the guaranteed convergence of
the simultaneous method (2.5) , we give a general theorem which can be applied
to a general class of simultaneous methods of the form

z(m+1)
i = z(m)

i − Ci

(
z(m)

1 , . . . , z
(m)
n

)
(m = 0, 1, . . .),(3.1)

where i ∈ In = {1, . . . , n} is the index set and z(m)
1 , . . . , z

(m)
n are some distinct approx-

imations to the simple zeros ζi, . . . , ζn, respectively, obtained in the m-th iterative
step by (3.1). In what follows the term

C(m)
i = Ci

(
z(m)

1 , . . . , z
(m)
n

)
(i ∈ In)

will be called the correction.

Let Λ(ζi) be a reasonably close neighborhood of a zero ζi (i ∈ In) and let the
corrections Ci, occurring in (3.1), can be represented as

Ci(z1, . . . , zn) =
P(zi)

Fi(z1, . . . , zn)
(i ∈ In),(3.2)

where the function (z1, . . . , zn) �→ Fi(z1, . . . , zn) satisfies the following conditions for
each i ∈ In :

1◦ Fi(ζ1, . . . , ζn) � 0,
2◦ Fi(z1, . . . , zn) � 0 for (z1, . . . , zn) ∈ Λ(ζ1) × · · · ×Λ(ζn),
3◦ Fi(z1, . . . , zn) is continuous in Cn.

Let us define a real function t �→ �(t) on the open interval (0, 1) by

�(t) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
1 + 2t, 0 < t ≤ 1

2
,

1
1 − t

,
1
2
< t < 1.

The following theorem (see [4] and [5]), involving corrections Ci and the function
�, plays the key role in our convergence analysis of the simultaneous method (2.5).

Theorem 3.1. Let the iterative method (3.1) have the correction term of the form (3.2) for
which the conditions 1◦ − 3◦ hold, and let z(0)

1 , . . . , z
(0)
n be distinct initial approximations to

the zeros of P. If there exists a real number β ∈ (0, 1) such that the following two inequalities
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(i)
∣∣∣C(m+1)

i

∣∣∣ ≤ β∣∣∣C(m)
i

∣∣∣ (m = 0, 1, . . .),

(ii)
∣∣∣z(0)

i − z(0)
j

∣∣∣ > �(β)(∣∣∣C(0)
i

∣∣∣ + ∣∣∣C(0)
j

∣∣∣),
(i, j ∈ In, i � j) are valid, then the iterative method (3.1) is convergent.

In our convergence analysis we will estimate some complex quantities using
an approach by circular complex arithmetic which deals with disks. A disk Z with
center c and radius r, that is Z := {z : |z − c| ≤ r}, will be denoted briefly by the
parametric notation Z = {c; r}. In the sequel for Zk = {ck; rk} (k = 1, 2), we will use
the relations:

z ∈ {c; r} ⇐⇒ |c| − r ≤ |z| ≤ |c| + r,(3.3)

|c1 − c2| > r1 + r2 ⇐⇒ Z1 ∩ Z2 = Ø,(3.4)

αZ = {αc; |α|r}, α + Z = {α + c; r}, α ∈ C(3.5)

and
n∏

k=1

zk ∈
n∏

k=1

Zk =
{ n∏

k=1

ck;
n∏

k=1

(|ck| + rk) −
n∏

k=1

|ck|
}
,(3.6)

where zk ∈ Zk = {ck; rk} (k = 1, . . . , n). For more details about properties of circular
complex interval arithmetic see the books [1] and [7].

The following assertion was proved in [?]:

Theorem 3.2. Let z1, . . . , zn be distinct numbers satisfying the inequality w < cnd, cn <
1/(2n). Then the disks

D1 :=
{
z1;
|W1|

1 − ncn

}
, . . . ,Dn :=

{
zn;

|Wn|
1 − ncn

}

are mutually disjoint and each of them contains one and only one zero of the polynomial P,
that is

ζi ∈
{
zi;

1
1 − ncn

|Wi|
}

(i ∈ In).(3.7)

In the sequel, we will assume that the following conditions

w < cnd, cn =
1
6n
,(3.8)

are fulfilled. The inequality in (3.8) is stronger than w < d/(2n) so that the assertions
of Theorem 3.2 hold.

Let εi = zi − ζi denote the error of the approximation zi to the zero ζi. Then,
starting from (3.7) on the basis of properties of circular complex arithmetic, we
obtain

|εi| = |zi − ζi| < 1
1 − ncn

|Wi| < cn

1 − ncn
d =

1
5n

d.
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Besides, we have the estimation

|zi − ζ j| ≥ |zi − zj| − |zj − ζ j| > d − 1
5n

d =
5n − 1

5n
d.

According to (3.8) we find∣∣∣∣zi − 1
2

Wi − zj

∣∣∣∣ ≥ |zi − zj| − 1
2
|Wi| ≥ 12n − 1

12n
d.(3.9)

Starting from (2.2) and taking into account (3.8) and (3.9), we estimate

|S1,i| ≤
∑
j�i

1∣∣∣∣zi − 1
2 Wi − zj

∣∣∣∣ ≤
12n(n − 1)
(12n − 1)d

,(3.10)

|G1,i| ≤
∑
j�i

|Wj|∣∣∣∣zi − 1
2 Wi − zj

∣∣∣∣ ≤
2(n − 1)
12n − 1

,(3.11)

|G2,i| ≤
∑
j�i

|Wj|∣∣∣∣zi − 1
2 Wi − zj

∣∣∣∣2
≤ 24n(n − 1)

(12n − 1)2d
.(3.12)

According to (2.4) and (3.10)–(3.12) we find

|Hi| ≤ |G1,i| + 1
2
|Wi|
(
|S1,i| + |G2,i|

)
+

1
2
|Wi||S1,i||G1,i| ≤ 38n2 − 41n + 3

(12n − 1)2 =: hn

and

|1 +Hi| ≤ 1 + hn =
182n2 − 65n + 4

(12n − 1)2 ,(3.13)

|1 +Hi| ≥ 1 − hn =
106n2 + 17n − 2

(12n − 1)2 .(3.14)

Hence, by (3.8) and (3.9) we estimate

∏
j�i

∣∣∣∣1 + 1
2 Wi

zi − 1
2 Wi − zj

∣∣∣∣ ≤
(
1 +

1
12n − 1

)n−1
=: pn.(3.15)

Starting from the iterative formula (2.5) we find

ẑi − zi = −Ci = − Wi

1 +Hi
·
∏
j�i

(
1 +

1
2 Wi

zi − 1
2 Wi − zj

)
.(3.16)

By (3.14)–(3.16) we estimate

|ẑi − zi| = |Ci| = |Wi|
|1 +Hi|

∏
j�i

∣∣∣∣1 + 1
2 Wi

zi − 1
2 Wi − zj

∣∣∣∣
<

pn

1 − hn
|Wi| < 1.48cnd <

1
4n

d,(3.17)



Point Estimation of Cubically Convergent Root Finding method 423

The sequence {pn/(1− hn)}n=3,4,... has a complicated form and we used symbolic
computation in the programming package Mathematica to find its upper bound. It
was found

pn

1 − hn
< 1.48.

Therefore, we have proved
|Ci| < 1.48|Wi|.(3.18)

According to (3.17) we obtain

|ẑi − zj| >
(
1 − 1

4n

)
d =

4n − 1
4n

d(3.19)

and
|ẑi − ẑ j| >

(
1 − 2

1
4n

)
d =

2n − 1
2n

d.(3.20)

The inequality (3.20) gives

d̂ >
2n − 1

2n
d, that is

d

d̂
<

2n
2n − 1

.(3.21)

The following lemma is concerned with some necessary bounds and estimates.

Lemma 3.1. Let the inequality (3.8) hold. Then

(i) |Ŵi| < 0.4|Wi|;
(ii) ŵ < cnd̂, cn = 1/(6n).

Proof. Putting z = ẑi in (2.3), we obtain

P(ẑi) =
( Wi

ẑi − zi
+ 1 +

∑
j�i

Wj

ẑi − zj

) n∏
j=1

(ẑi − zj).

Hence, after dividing by
∏
j�i

(ẑi − ẑ j),we find

Ŵi =
P(ẑi)∏

j�i

(ẑi − ẑ j)
= (ẑi − zi)

( Wi

ẑi − zi
+ 1 +

∑
j�i

Wj

ẑi − zj

)∏
j�i

(
1 +

ẑ j − zj

ẑi − ẑ j

)
.(3.22)

Starting from the iterative formula (2.5) we obtain

Wi

ẑi − zi
= −(1 +Hi)

∏
j�i

(
1 −

1
2 Wi

zi − zj

)
.(3.23)
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Using (3.8) and the definition of the minimal distance d we obtain

1
2 |Wi|
|zi − zj| ≤

1
2

cn.

According to (3.3), (3.5) and the last inequality, we estimate

−
1
2 Wi

zi − zj
∈
{
0;

1
2

cn

}
=⇒ 1 −

1
2 Wi

zi − zj
∈
{
1;

1
2

cn

}

wherefrom, due to (3.6), we find

∏
j�i

(
1 −

1
2 Wi

zi − zj

)
∈
∏
j�i

{
1;

1
2

cn

}
=
{
1;
(
1 +

1
2

cn

)n−1
− 1
}
.(3.24)

Now, using (3.5), (3.23) and (3.24) we obtain

Wi

ẑi − zi
= −(1 +Hi)

∏
j�i

(
1 −

1
2 Wi

zi − zj

)

∈ −(1 +Hi)
{
1;
(
1 +

1
2

cn

)n−1
− 1
}

⊂
{
−1 −Hi; (1 + hn)

((
1 +

1
2

cn

)n−1
− 1
)}

⊂ {−1 −Hi; rn}.(3.25)

By (3.8) and (3.13) we find the upper bound

rn = (1 + hn)
((

1 +
1
2

cn

)n−1
− 1
)
< 0.11.(3.26)

To prove (i) we use (2.4), (3.5) and (3.25) and find:

Wi

ẑi − zi
+ 1 +

∑
j�i

Wj

ẑi − zj
∈ {−1 −Hi; rn} + 1 +

∑
j�i

Wj

ẑi − zj

=
{
−1 − G1,i − 1

2
Wi(S1,i + G2,i) +

1
2

WiS1,iG1,i

+1 +
∑
j�i

Wj

ẑi − zj
; rn

}

=
{
−(ẑi +

1
2

Wi − zi)
∑
j�i

Wj

(ẑi − zj)(zi − 1
2 Wi − zj)

−1
2

Wi(S1,i + G2,i) +
1
2

WiS1,iG1,i; rn

}
= {θi; rn}.
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Using the bounds (3.8) and (3.17) we find
∣∣∣∣ẑi +

1
2

Wi − zi

∣∣∣∣ ≤ |ẑi − zi| + 1
2
|Wi| ≤ 1

3n
d.

According to (3.8), (3.9), (3.19) and the last inequality we estimate

∣∣∣∣(ẑi +
1
2

Wi − zi)
∑
j�i

Wj

(ẑi − zj)(zi − 1
2 Wi − zj)

∣∣∣∣
≤ 8(n − 1)

3(4n − 1)(12n − 1)
.(3.27)

Now, by the inequalities (3.10)–(3.12) and (3.27) we can find the upper bound to
the center θi,

|θi| ≤
∣∣∣∣(ẑi +

1
2

Wi − zi)
∑
j�i

Wj

(ẑi − zj)(zi − 1
2 Wi − zj)

∣∣∣∣
+

1
2
|Wi|(|S1,i| + |G2,i|) + 1

2
|Wi||S1,i||G1,i|

≤ 168n3 − 126n2 − 47n + 5
3(4n − 1)(12n− 1)2 < 0.1.

Taking into account (3.3) and (3.26) we find

∣∣∣∣ Wi

ẑi − zi
+ 1 +

∑
j�i

Wj

ẑi − zj

∣∣∣∣ ≤ |θi| + rn < 0.21.(3.28)

With regard to the bounds (3.17) and (3.20) we estimate
∣∣∣∣∣∣
∏
j�i

(
1 +

ẑ j − zj

ẑi − ẑ j

)∣∣∣∣∣∣ <
(
1 +

1
2(2n − 1)

)n−1
.(3.29)

Taking absolute value of (3.22), we use the inequalities (3.17), (3.28) and (3.29), and
obtain

|Ŵi| < 1.48|Wi| · 0.21
(
1 +

1
2(2n − 1)

)n−1
< 0.4|Wi|,(3.30)

which proves (i) of Lemma 3.1. Hence, for n ≥ 3 it follows 0.8n/(2n − 1) < 1. Now
we have by (3.21)

ŵ < 0.4w < 0.4cnd <
0.8n

2n − 1
· cnd̂ < cnd̂,

which completes the proof of the assertion (ii) of Lemma 3.1. Note that the asser-
tion (ii) plays one of the key roles in convergence analysis since the stated initial
condition (3.8) keeps its form in the next iteration. �
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Now, we state the main result concerning the initial conditions which guarantee
the convergence of the iterative method (2.5).

Theorem 3.3. Under the initial condition

w(0) <
d(0)

6n
,(3.31)

the iterative method (2.5) is convergent.

Proof. In Lemma 3.1 (assertion (ii)) we have proved the implication

w < cnd ⇒ ŵ < cnd̂, cn =
1
6n
.

Similarly, we prove by induction that the condition (3.31) implies the inequality
w(m) < cnd(m) for each m = 1, 2, . . . . Therefore, all assertions of Lemmas 3.1 hold for
each m = 1, 2, . . . if the initial condition (3.31) is valid. In particular, the following
inequalities

|W(m+1)
i | < 0.4|W(m)

i |(3.32)

and
|C(m)

i | = |z(m+1)
i − z(m)

i | < 1.48|W(m)
i |(3.33)

hold for i ∈ In and m = 0, 1, . . . .

From the iterative formula (3.1) we see that the corrections C(m)
i are expressed

by

C(m)
i =

P(z(m)
i )

(1 +H(m)
i )
∏

j�i

(
z(m)

i − 1
2 Wi(z

(m)
i ) − z(m)

j

) ,(3.34)

where the abbreviations C(m)
i and H(m)

i are related to the m-th iterative step. Omitting
the iteration index for simplicity, we find by (3.2),

Ci =
P(zi)

(1 +Hi)
∏

j�i

(
zi − 1

2 Wi − zj

) = P(zi)
Fi(z1, . . . , zn)

,

where

|Fi(z1, . . . , zn)| = |1 +Hi|
∏
j�i

∣∣∣∣zi − 1
2

Wi − zj

∣∣∣∣
> (1 − hn)

(
1 − 1

2
cn

)n−1
dn−1 > 0.6dn−1 > 0

for i ∈ In. It proves that the iterative process (2.5) is well defined in each iteration.We
show that the function Fi(z1, . . . , zn) = P(zi)/Ci appearing in (3.2), cannot be 0.
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Now we will prove that the sequences {|C(m)
i |} (i ∈ In) are monotonically decreas-

ing.

Omitting the iteration index for simplicity, we find by (3.13), (3.17), (3.18), (3.30)
and (3.32)–(3.34)

|Ĉi| < 1.48|Ŵi| < 1.48 · 0.4 |Wi|
|1+Hi|

∏
j�i

∣∣∣∣1 +
1
2 Wi

zi − 1
2 Wi − zj

∣∣∣∣
×|1 +Hi|

∏
j�i

∣∣∣∣1 −
1
2 Wi

zi − zj

∣∣∣∣
≤ 0.592|Ci|(1 + hn)

(
1 +

1
2

cn

)n−1
< 0.82|Ci|,

that is,
|Ĉi| < 0.82|Ci|.

Therefore, the constant β which appears in Theorem 3.1 is equal to β = 0.82. In
this way we have proved the inequality |C(m+1)

i | < 0.82|C(m)
i |, which holds for each

i = 1, . . . , n, m = 0, 1, . . . .

The quantity �(β) appearing in (ii) of Theorem 3.1 is equal to �(0.82) = 1/(1 −
0.82) ≤ 5.56 . It remains to prove the disjunctivity of the inclusion disks

S1 = {z(0)
1 ; �(0.82)|C(0)

1 |}, . . . , Sn = {z(0)
n ; �(0.82)|C(0)

n |}
(assertion (ii) of Theorem 3.1). Due to the inequality (3.18), there holds the estimate

|C(0)
i | < 1.48w(0)

for every correction |C(0)
i | for all i = 1, . . . , n. Let p be the index p ∈ In such that

|C(0)
p | = max

1≤i≤n
|C(0)

i |.

Then

d(0) > 6nw(0) >
1

1.48
6n|C(0)

p | ≥ 6n
2 · 1.48

(
|C(0)

i | + |C(0)
j |
)

> �(0.82)
(
|C(0)

i | + |C(0)
j |
)

since
6n

2 · 1.48
≥ 6.08 > 5.56 ≥ �(0.82)

for all n ≥ 3. This means that

|z(0)
i − z(0)

j | ≥ d(0) > �(0.82)
(
|C(0)

i | + |C(0)
j |
)
= rad Si + rad Sj.
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Hence, according to a simple geometric construction, it follows that the inclusion
disks S1, . . . , Sn are disjoint (see (3.4)), which completes the proof of Theorem 3.3.
�

Theorem 3.3 gives sufficient initial conditions that guarantee the convergence
of the iterative method (2.5). In practice, these conditions can be relaxed and a
greater value for the constant cn (instead of 1/(6cn)) can be taken.
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