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ON AN INTERVAL METHOD FOR THE INCLUSION OF ONE
POLYNOMIAL ZERO *

DuSan M. MiloSevi¢, Miodrag S. Petkovi¢ and Mimica R. MiloSevit

Abstract. In this paper we construct a new interval method for the inclusion of one
simple or multiple complex polynomial zero in circular complex arithmetic. We present
the convergence analysis starting from the computationally verifiable initial condition
that guarantees the convergence of this inclusion method. We also give two numerical
examples in order to demonstrate convergence behavior of the proposed method.

1. Introduction

Starting from an appropriate zero-point relation we derive an interval method
for the inclusion of one simple or multiple complex zero of a polynomial in circular
complex arithmetic. Under computationally verifiable initial conditions we prove
that the proposed method has the convergence order equals three. The considered
method was realized in circular interval arithmetic, which means that the produced
approximations have the form of disks containing the wanted zero. The main
advantage of the inclusion methods is the feasibility to express the upper error
bound of the approximation by the radii of the resulting disk. We note that an
appropriate fourth-order circular arithmetic method for the simultaneous inclusion
of all simple or multiple complex zero, obtained from the same zero-relation, was
considered in the paper [11].

The presentation of the paper is organized as follows. Some basic definitions
and operations of circular complex interval arithmetic, necessary for the conver-
gence analysis and the construction of inclusion methods, are given at the end of
the Introduction. The derivation of the method for the inclusion of one simple or
multiple complex zero and its convergence analysis are presented in sections 2.
and 3., while numerical examples are given in section 4.

First we give a review of the basic properties of the so-called circular complex
arithmetic introduced by Gargantini and Henrici [4]. A circular closed region (disk)
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Z :={z:|z—c| < r} with center ¢ := mid Z and radius r := rad Z is denoted by
parametric notation Z := {c;r}. Then

afc;r} {acilalr}  (a € C),
{ciyrif£{co ) = {crxcor+r)

The inversion of a non-zero disk Z is defined by the Mobius transformation,

c r

(1.1) Z1l= {2‘1 D ze€ Z} = {m m},
(Ic| > 1, i.e.,0 ¢ Z). The addition, subtraction and inversion Z~! are exact operations.

Let us define the disk {z lz—a < R}, denoted by {a;R}, and the region
W = {z Cz—al > R}. If z¢ W (that is, |z — a] < R) the inversion of the region

z-W={w:w-(z—-a) >R}
is the closed interior of a circle given by (see [3])
V@) = (@-W)™ ={h@);d@)

Z—a R

1.2 = : <
(1.2 {W ‘W+R2—|z—a|2 —R2—|z—a|2}’
where -

h(z) = midV(z) = ——%

R? —|z —af?

and

d(Z) = rad V(Z) = m

The set {z1z, : z; € Z;1, z, € Z}, in general, is not a disk. In order to remain
within the set of disks, Gargantini and Henrici [4] introduced the disk multiplication

by
(1.3) Z1-Z; = {ciColcalra +(Colry + 12} 2 {2125 & 21 € Zy, 25 € Z).
Then the division is defined by

Z1:2,=2,-7Z,".

The square root of a disk {c; r} that does not contains the origin, where ¢ = |c|e'’
and |c| > r, is defined as the union of two disjoint disks (see [2]):

Al . i0/2. r i0/2. r
= (Ve e VR )
In this paper we will use the following obvious properties:
zefcr} & |z—-c|<r,
fcrinfesrnl=0 < Jct—c>r+r,.

More details about circular arithmetic can be found in the books [1], [5], [6] and
[13].
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2. Interval method for the inclusion of one zero

Let P(z) = zN +an_1ZN"t + ... + a1z + g be a monic polynomial with simple
or multiple complex zeros Cy,...,Cy (2 < n < N), with multiplicities p, ..., tn
(u1 + ...+ un = N), respectively, and let

(2.2) Z C  (k=1,2), u@) = FF:,((ZZ)).
The following zero-relation has been derived in [8]
G = zi—pu@@)- ;Z[Fiu(zi)(l — Ui
2(1 - U(Zi)Sl,i)
P"(z) o, \e2
(2.2) +uiu(zi) P'(z) —-u (Zi)(sl,i - Hi52,i))]

forie7,:={1,2,...,n}.

Assume that we have found the inclusion disk {z : |z—a| < R} with center aand
radius R containing only one zero ; of P. All other zeros are supposed to lie in the
region W = {z : |z —a|] > R}. Using the inclusion isotonicity property we obtain for
z€{a;R}

2.3) @-C)te (

1 . . .
z—W) (Gi=1,...,i-1,i+1,...,n).
If z ¢ W (that is, |z — a| < R), using (1.2) we obtain the inversion
V(2) = (z- W)™ = {h(2); d(2)}.

According to the inclusion isotonicity property, and by (2.1) and (2.3), we find

S € )@= W)F = (N=m) V) =Sy,

j#i

(k=1,2, i€ Iy). Inview of this, from the zero-relation (2.2) we get for z = z;

1
G € zi—piu(@) - —————|miu@)|1 - wi
T 2(1—U(Zi)81,i)2 [[uu i ( '

P// i .
o) W@ -S|, (€ 1)

(2.4) +uiu(zi)

In our consideration only one zero is requested so that, without loss of generality
we may adopt that this zero is denoted with {; and suppose that all other zeros
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Co, ..., Cqliein the exterior of {a; R}. Moreover, for brevity, we will write C instead of
C1. Also, we will write s1, 5, S1 and S, instead of s34, 521, S1,1 and Sy 1, respectively.

Let zM = {z(m); r(”‘)} be a disk with center z™ = mid Z™ and radius r™ =
radZ™M form =0, 1,... . For the initial inclusion disk Z©@ we have Z© = {a; R}, that
is, zO0 = a, r@® = R. We introduce the notation

v = (2 W)‘l = {hm; )
and
S = (N = (V™) k=12
The relation (2.4) suggests the following iterative method for finding a multiple

complex zero of a polynomial P, starting from the isolated inclusion disk Z©@ =
{a;R}:

1
2(1 - u(zm) ™Y’

Zm D = 2™ py(2™) -

x[yu(z(m))(l —u+ Hu(z(m)) ::<(ZZ(:)))
e () s

3. Convergence analysis

In this section we will analyze the iterative method (2.5) which can be rewritten

in the form (m) (m)
{b(z'™); n(z'™)}
(m+1) _ () _ (m) _
(3.1) z 2™ — u(z™) 2{c(zm); y(z2(m))2’

(m=1,2,...), where

P"(Z(m))

B, ~UE”)N =N -20)

b(Z(m)) — [JU(Z(m))(l —u+ }JU(Z(m))

( a-zm )2)
X|———————= ] |
R2 — |z — a)z

2a - z2™|R + R?

n@™) = ufu@™)N - (N - 2p) ————
Ju(z™) F ]
R
@) = |uz™)|N - p)—————,
7/ ) ( )| ‘l RZ—)Z(m)—a)z
a— 7

my = _ (m) )
c(z ) =1 u(z )(N M)R2—|z(m)—a)2.
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Assume that we have found the initial disk Z© = {a; R} so that the conditions

_ |P@® R
@I = 56| < sw-me
(3.2)
P”(a) 8(N-p)
Pl | < TR

are satisfied. Also, form =1,2,...let us introduce
6™ =R - |z™ 4.

At the beginning, let us consider the first iteration (m = 0). According to (2.1),
(3.2) and the inequality (N —2u)/(N — ) < 1, we obtain

1 R
n(@) = plu@PN — (N - 2025 < T
and
lb@) < [J|U(a)|(1 +u+ ylu(a)| I::((aa)) )
wrprl R 3R

< .
p2 o 8(N-p) =~ 8(N-p)
Similarly, c(a) = 1 and

y(@) < Ju(@)I(N - ‘u)% < 8%12 < %

Let us examine the disk in the denominator in the first iteration. Using formula
(1.3) and the bound for y(a), we estimate

(1y@P = (1:2/@) + @) < (L5, |

The obtained disk does not contain the origin (because of 1 > 17/64) and we can
find its inverse disk using (1.1). We get

{1. 17}—1 B @ 6{1_ 17}'

7 i e
- (4]

Starting from (3.1), using (1.3) and the obtained bounds for |b(a)| and n(a), we
find the upper bound for r®,

3 17 17
1 = m=2 -
r radZ 5(|b(a)|64 +n(a) + n(a) 64)’
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wherefrom
2 R

O
(3.3) r <25 Nz

Under the conditions (3.2) and the obtained bound for |b(a)| we estimate

R R
8(N —p)u ~ 40(N — p)

|29 — 4| < ulu(a)l + g Ib(a)| <

and find ; R
™ _ -
(3.4) |z a|<20 N—g
Now we shall prove that the conditions (3.2) imply the inequality
(3.5) oM > 8(N — p)r®.
Using the inequality (3.4) we find
7R 7
D -Rr—|®_ [ S
W =R-|zW-a >R 200N =7 R[l 20(N—M)]'

so that, according to (3.3) and (3.5), it is sufficient to show that

2R

7
Rll- ———

[ 20(N — u)]

The last inequality follows directly from the inequalities

7 13 65 64 16

-2 o= 2> — = .
20(N—p) — 20 100 © 100 25
The analysis of the first iterative step shows that

(i) a new disk approximation Z® includes the zero (;
(i) this disk is contracted because of

2R
3.6 W< =,
(3.6) < e
Besides, the initial conditions (3.2) induces the condition (3.5).

Now, we can analyze the iterative process (3.1) beginning with m > 1 and
starting from the inclusion disk ZY) with the assumption that the condition (3.5)
holds. For simplicity, in our analysis we omit the iteration index always when the

possibility of any confusion does not exist. Also, let us include the abbreviations

(22722} = (@i @1 = (1@ @)

ande =z-C.
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Lemma 3.1. If the inequality
3.7) 0>8(N—p)r
holds, then

8r.

Tu’

(i) U@ =

(i) &> lc@)>$;

u+esy

8(N—
(iii) ()l < 252 <

(iv) le2(2)] < 2;

V) y2(2) < T <

18(N y)r

(vi) |b(z)l < ,

. 3(N—)(N—2u)r
(vii) n(z) < %

Proof. Of (i): Since
k=12,

Isl < 5

under the condition (3.7) we estimate
P(z)

. |
ma'zpﬁ‘:gﬂﬂzhi&

le] r 8r
<

< —-—.
ES1 7
)

Of (ii): Using the bound

lu(2)|

IA

la—z] R-0 1
3.8 = -
(38) RZ_z—a? RE—-(R-0% .5
and the assertion (i), from the relation
a—z
c(z)=1-u(z)(N - y)
)bﬂ
we obtain o 6
rN-u
lc(2)| > 1 7 3 > Z
and .
lc(z)| <1+ b <=
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Of (iii): Starting from the relation

Y@ = u@N - ) ————,
R2-|z-a
using the assertion (i) and the bound
R 1
RE—|z—af O
we obtain SN-r 1
y(z) < 77#“5 < ﬁ

Of (iv) and (v): Using (1.3) we find
{12 71@) = (@) Y@ = (@)% 2c@)ly @) + y(2)*).

According to the assertion (ii), from the last relation we estimate

36
3.9 c —.
(3.9) @) > 75
Similarly, in regard to the assertions (ii) and (iii) we find

88 N—u
(3.10) n@<2g 70—+ +(

N —pu\2  14r(N -
8r #)< r( u)<7

u 6 510 20°

Since [c1(2)] > % > % > y1(z), we conclude that 0 ¢ {c1; y1} and we can find the
inverse of the disk {c1(2); y1(2)},

L 6@
lea ()12 - y2(2)

From the last relation and (3.9) and (3.10), we estimate

{c2(2); y2(2)} = {c1(2); y1(2)}

e2(2)] = . SRS S
i @) -7 @/e@)] £ -2 5
and
14r(N—y)
(2) = 71(2) - 500 B 7r(N — ) 3 7
e c1(2)[? - y1(2)? (&)2 j (l)z 1o By
49 20

Of (vi) and (vii): Now we consider the disk in the nominator {b(z); n(z)}. Using
the abbreviations
P'(z)
P(2)

P'(2)* - P(2)P"(2)

Al (Z) = P(Z)2

and Ay(z) =
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we obtain o
(3.11) = ((ZZ)) — U@)(AL2) — Ao(2)).
Since
_d Ny M _H
M(z) = OIZ(Iog P@) = ,Z:;‘ Gt
and
o2 oy p
Ay(2) = —@(Iog P@)) = ) JC,—)Z =S+,

using (3.11) we find

P’(z) 2uesy + €22 — ue’s,
P'(z) (1 + €51)?

(3.12) 1—p+ pu(z)

Taking into account that

N —p
lel <r and SKST k=1,2),
we find the bounds
9ru(N —

(3.13) [2uesy + €72 — pue’sy| < W
e (N—w) (N—w@ry _ 7

—wr —wr
(3.14) R =y(l— y; )z{

Using the inequalities (3.13) and (3.14) we estimate from (3.12)

P/l (Z)
P"(2)

144(N — w)r
<
4916

(3.15) '1 - u+ pu(z)

By applying the assertion (i) and the inequalities (3.8) and (3.15), we find the
upper bound of |b(z)],

8r(144r(N - )  64r2(N — p)(N — 2u)\  18(N — p)r2
b@)l < 7( aus 49,257 ST s

Similarly, by virtue of the inequality (3.8) and the assertion (i), from the relation
Z)a - Z)R +R?

n() = pu¥@)(N - (N - 2p) ————
(R2 ~|z- a))
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we obtain
3(N - u)(N —2u)r®

20262

n(z) <

Now we are able to prove that the order of convergence of the method (2.5) is
three.

Theorem 3.1. Letthe sequence of circular intervals {Z(m)} ) be defined by the iterative

formula (2.5), assuming that the initial disk Z© = {a: R} is chosen so that it contains the
zero C and the conditions (3.2) are satisfied. Then, in each iterative step, the following is
true:

(i) Cezm;

(ii) p(m+1) 68(:;‘2—#)(r(m))3_

Proof. The assertion (i) follows from the zero-relation (2.2) on the basis of the
inclusion isotonicity property and the fact that z™ e {a;R} for eachm = 0,1,...,
which is obvious because of

R—[z™ —a| = 6™ > 8(N - p)r™ > 0.

We now prove that the convergence rate of the iterative method (2.5) is cubic (the
assertion (ii)). Using the inequality (3.5) and the bounds obtained in the Lemma
3.1, we find for r® = rad z®

15(N — y)2<r(1))3

()

(@ — %(|b(z)|y2(z) + [c2(2)In(2) + 77(2))/2(2)) <

and 1
(3.16) r® < =@,
4
By the inequality (3.4) we estimate

7 13
(€0 R - N PAC - _R==-
(3.17) 6 R |z a| >R 50 R 36 R.

Besides, starting from the inequality

6@ = R-|? -4

R —

zW —a—uu(2) - % c2(2)b(2)

\Y

R—[z® —a| - 'yu(z) + % ¢2(2)b(2)
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we obtain
1 8
pu(2) + 5 c(2)b()| < : rd

and conclude that
5@ 5 50 _ g e

Applying the inequalities (3.5) and (3.16), we get

5@ 5 s _ g (D 5 8N = yr® g e

ECEmE

4[8(N - g]r@) > 8(N — w)r@.

\Y

Using the same consideration as for m = 2, by induction we prove that form > 2
the following relations (already proved for m = 2) are true:

2
(319) ety DOy’
2 7
(o)
(3.19) ey T
4 7
(3.20) oM > 8(N - p)rm
and
(3.21) oM+ > 5m _ g r(m.

By successive application of the inequalities (3.19) and (3.21), using the bounds
(3.6) and (3.17) we obtain

5m 5 sm-1) _ 8 ™1

2
> 6(1)—gr(1)(1+%+(%) +)

32 13 32 2 47
oW - ZR-_T". - R> __R,
5" 7207715 25"~ 100

According to this, from the inequality (3.18) it follows

68(N — 1)> 3
(m+1) (m)
rm < R (r m ) .
We complete the proof of the theorem providing that the iterative method (2.5) is
defined in each iterative step under the initial conditions (3.2), that is, 0 ¢ {c(m); r(m)}

foreachm=1,2,... .Indeed, from the conditions (3.2) the inequality (3.20) follows
foreachm=1,2,...s0 that Lemma 3.1 is applicable. O
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4. Numerical examples

The proposed algorithm (2.5) has been tested in solving many polynomial equa-
tions. To provide the enclosure of the zeros in the second and third iteration that
produce very small disks, we used the programming package Mathematica 7 with
multi-precision arithmetic. We also tested the third order Halley-like method for
the inclusion of one polynomial zero [7]

1

(4.2) zm+h) = Z(m _ ,
Azm)

where

B 1\P'(z) P"(2)
A@ = @+ﬁkmn_2w@

P@) NIN-p)f
— ey,

" 2P(2)
and the third order Euler-like method [10] (see also [9], [12] and [14])
Zmel)  _ m) _ 24 -
2
6:2) + 2102(2) - 83(2) + 2NN - ) @) 4 |
(4.2) (i=1,...,n,m=0,1,...).

Example 4.1. To find the circular inclusion approximations to a simple zero of the polyno-
mial
Pz = 2z -2 +287"% —3907" +60022" — 10762z"* — 29 4847"
+846 0407%° — 76 809 7072° + 13058342728 — 2113327 2167’
+247958909902° — 339 342 802 6962 + 178 957 763 3367*
+7 226702 364 6722° — 88 957 569 392 6407
+1984 671 888 998 400z — 1 902 803 374 080 000

we implemented the interval methods (2.5), (4.1) and (4.2). The isolated zero of P is C; = 1.
The initial disk was selected to be Zgo) = {0.9 + 0.1i;6}. The radii of the inclusion disks
produced in the first three iterative steps are given in Table 4.1, where the denotation A(—q)
means A x 1079.

Example 4.2. To find the circular inclusion approximations to a multiple zero of the poly-
nomial
Pz) = z% -9z +57z'% —3437" — 18307 + 226447° — 147 5287°
+889 0562 — 295 4882° — 13343 6162° + 95 178 2407*
—576 108 2887° + 1279 867 3927° — 1148 857 344z + 362 797 056,
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Table 4.1: The radii of inclusion disks

D o) )
(4.1) | 1.08(-2) | 2.07(-9) | 8.75(—36)
(4.2) | 4.85(-2) | 3.66(-9) | 1.12(—34)
(2.5) | 9.01(=2) | 1.01(=7) | 3.58(-30)

we implemented the same interval methods. The isolated multiple zero of P is {; = 1 of
multiplicity y; = 3. The initial disk was selected to be Zgo) = {0.9 + 0.1i; 2}. The radii of the
inclusion disks produced in the first three iterative steps, are given in Table 4.2.

Table 4.2: The radii of inclusion disks

D @ )
(4.1) | 6.03(=3) | 4.05(-11) | 1.50(—38)
(4.2) | 2.60(=2) | 5.70(-11) | 7.21(-39)
(2.5) | 9.04(=3) | 2.01(—10) | 4.29(—37)

From Tables 4.1 and 4.2 we observe that theoretical results, concerning the
convergence order of the considered method (2.5), mainly well coincide with the
convergence behavior in practice. The disks obtained by the iterative method (2.5)
and the methods (4.1) and (4.2) are comparable in size.

Also we remark that the third iterations are displayed only to demonstrate
remarkable accuracy of the produced approximations, which are rarely requested
in practice.
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