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THE FEKETE PROBLEM AND CONSTRUCTION OF THE SPHERICAL
COVERAGE BY CONES

Marko D. Petković, Nenad Živić∗

Abstract. We study whether the optimal solution of the Fekete problem (i.e. placement
of n points on a unit sphere inRd minimizing a certain potential function) can be used for
construction of the spherical coverage by cones. The forces method (see [1]) is applied
and different potentials are used for solving Fekete problem (Newtonian, logarithmic,
Riesz-Fisher and Lennard-Jones). Such approach is easy for implementation and has
good convergence properties. Results for d = 3 are compared to the referent results from
[6]. A good agreement is shown (relative difference of the covering angles is less than
10% for all values of n and almost zero for some of them) which enables us to use the
same methodology for higher dimensions where no referent results are available.

1. Introduction

Construction of uniformly placed points on a unit sphere Sd in Rd (d ∈ {3, 4, 5, . . .})
is an important problem with various applications ranging from coding theory [2]
to computational geometry and multidimensional databases [4]. There are many
ways to model the criteria of ”uniformity” of the points.

One of the most intuitive and mostly used approaches is to consider the mini-
mization of the following functional

I(x1, x2, . . . , xn) =
∑

1≤i< j≤N

K(xi, x j), xi ∈ Sd, i = 1, 2, . . . , n

for a given n and d, where K(x, y) is a kernel function. This problem is known
in literature as Fekete problem [5]. Usually, kernel function is given by K(x, y) =
φ(‖x − y‖) where φ is some potential function and ‖ · ‖ is 2-norm. The potential
φ(x) = xs is known as Riesz potential and its special case s = 2− d corresponds to the
electrostatic (or Newtonian) potential energy in d dimensions. The corresponding
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Fekete problem is known as Thompson problem in this special case [12]. Although
this is a quite old problem, it is the subject of many recent papers (including
[1, 10, 11]).

The other approach is to maximize a minimal pairwise distance between the
points, i.e.

(max) min
1≤i< j≤n

‖xi − x j‖.
This problem is known as the Tammes problem or the optimal spherical code
construction problem [7, 3]. It is known that Fekete problem with Riesz potential is
reducing to the Tammes problem by taking s → −∞. So far the best solutions (for
some combinations of n and d) of the Tammes problem can be found on the N.J.A.
Sloane’s homepage [7].

The third important approach to model a ”uniformity” of points is known as
spherical coverage problem [6]. Denote by C(t, θ) the cone centered in 0, directed by
t ∈ Sd with the half-angle θ, defined in the following way

C(t, θ) = {x ∈ Rd | (x, t)/‖x‖ ≥ cosθ}.
We assume that 0 ∈ C(t, θ) by definition. For a given n and d, the spherical coverage
problem consists of finding a minimal angle θ such that there exist n cones of the
half-angleθ, covering the entire spaceRd. In other words, it is needed the existence
of points x1, x2, . . . , xn ∈ Sd satisfying

C(x1, θ)∪ C(x2, θ)∪ . . . ∪ C(xn, θ) = Rd.

The optimal solutions (covering angles θ as well as the corresponding points) of
the spherical coverage problem for d = 3 and n = 4, 5, . . . , 130 are available in [6]. It
is recently shown in [9] that a verification variant of this problem (given the set of
cones C(xi, θi), i = 1, 2, . . . , n, with non-necessarily equal angles, find whether they
cover Rd) is an NP-hard problem.

The advantage of the Fekete problem is the fact that it enables the most easy
and computationally inexpensive method for its solving, comared to the Tammes
and spherical coverage problem. On the other side, spherical coverage problem
seems to be the most advanced to solve. The intention of this paper is to consider
whether the optimal solution of a certain Fekete problem can serve as a good
approximation to the optimal solution of the spherical coverage problem. The
positive answer on the previous question would enable an (both from the aspects
of design and computational time) easy way to provide a good enough solution of
the more difficult spherical coverage problem.

2. The Forces method for solving Fekete problem

The Forces method, introduced in [1], will be used to solve Fekete problem. It is the
iterative method which starts from some given initial set of points x0

1, x
0
1, . . . , x

0
n ∈ Sd
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and computes the points in k + 1-th iteration using the following scheme

(2.1)
x̂k+1

i = xk
i + λ

kwk
i

xk+1
i = x̂k+1

i /‖x̂k+1
i ‖

for each i = 1, 2, . . . , n and k ∈N0. Assume that K(x, y) is a symmetric function and
that I(x1, x2, . . . , xn) is represented in the following form

(2.2) I(x1, x2, . . . , xn) =
1
2

n∑
i=1

Vi(xi), Vi(x) =
∑
j�i

K(x, x j).

where Vi(x) is total potential coming from all particles j � i at point x. In such case,
the total force acting on particle i, denoted by Fi = −∇Vi(xi), can be written in the
following form

(2.3) Fi =
∑
j�i

Fi j, Fi j = −∇K(x, x j)
∣∣∣
x=xi
.

Direction vector wk
i is then computed by

(2.4) wk
i = Fk

i /‖Fk
i ‖.

Assuming that K(x, y) = φ(‖x − y‖), one can write

(2.5) Fi j = −∇K(x, x j)
∣∣∣
x=xi
= −φ

′(‖xi − x j‖)
‖xi − x j‖ (xi − x j)

and find that Fi j = −F ji for each i � j. The magnitude of the step size λk is

(2.6) λk = a min
1≤i< j≤n

‖xi − x j‖.

where a is a given constant which is independent of the iteration number k. Note
that the method similar to the forces method is also introduced in [10], but only for
Newtonian potential.

3. Monte-Carlo method for initial points and covering angle computation

For a given cone directions x1, x2, . . . , xn ∈ Sd, we need to compute a minimal angle
θmin such that

⋃n
i=1 C(xi, θmin) = Rd. A simple method for the accurate estimation

of θmin is based on the Monte-Carlo technique. Random point Xk ∈ Sd is generated
for each k = 1, 2, . . . ,N and

θk = min{∠(Xk, xi) | i = 1, 2, . . . , n}
is computed. Value θmin is then estimated by

θmin ≈ θ̄ = max{θ1, θ2, . . . , θN}.
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In order to compute a uniformly distributed (pseudo)random point on a unit sphere
Sd, one can use the following expression (see for example [8]):

Xk = X̂k/‖X̂k‖, X̂k = randn(d)

where randn(d) is d-dimensional vector of independent (pseudo)random numbers
according to the zero-mean unit variance normal distribution N(0; 1).

The same method can be used for generation of the initial set of points x0
1 , x

0
2, . . . , x

0
n,

i.e. x0
i = x̂0

i /‖x̂0
i ‖ and x̂0

i = randn(d) for every i = 1, 2, . . . , n.

A more accurate value of θmin can be obtained using the spherical coverage
verification algorithm, given in [9]. This algorithm can verify whether a given set
of cones C(xi, θi) covers the entire spaceRd. Since obviously θ̄ < θmin, one can first
compute a minimal k such that the angle θ1 = δkθ̄ (where δ = 1.05, for example) is
sufficient for covering (i.e. θmin < θ1) and then apply a binary search technique to
find θmin.

4. The algorithm

This section shows the complete algorithm for construction of the spherical cover-
age, based on the optimal solution of the Fekete problem for several given poten-
tials. Forces method (described in section 2) is used for the optimization routine,
while the covering angle is computed by methods given in the previous section.

Table 4.1 shows the list of potentials φ(x) we used for solving the corresponding
Fekete problem.

Table 4.1: List of used potentials for solving the Fekete problem.

Name φ(x) φ′(x)
Newtonian cx−(d−2) −c(d − 2)x−(d−1)

Riesz-Fisher cxs csxs−1

Logarithmic −c log x −c/x

Lennard-Jones c
((

rm
x

)p − 2
(

rm
x

)2p
)

2cd
rm

((
rm
x

)p − ( rm
x

)2p
)

Standard Lennard-Jones potential is obtained for p = 6 and serves as an ap-
proximation of the particle interaction in nuclear and solid-state physics. It is also
called 6 − 12 potential. For the purpose of numerical stability, we used a smaller
value of exponent p = 2 and rm = (4π/n)1/2, where n is the current number of points
on the sphere. These two potentials and forces are shown and compared in Figure
4.1. We found that Lennard-Jones potential is a good candidate since the value of
the force is small if the distance between particles x is around rm, and large if it is
much smaller than rm.
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Fig. 4.1: Lennard-Jones and modified Lennard-Jones potential are shown on the
left graph. The corresponding forces are shown on the right graph.

Since the force generated by all mentioned potentials tends to be very large
when the particle distance x is small, a cutoff value x0 is introduced. A modified
potential is then defined by

(4.1) φ̃(x) =

⎧⎪⎪⎨⎪⎪⎩
φ(x0) + (x − x0)φ′(x0), x < x0

φ(x), x ≥ x0

In such way, we the force intensity is constant and equal to |φ′(x0)|, for every x ≤ x0.
It is worth stressing that this does not affect the actual optimizing behavior of the
algorithm, it just ensures that no NaN-s are run into. Value of x0 depends on which
potential is used, but one way to select it is to bound φ′(x0) by some value M (for
example, M = 1000).

Complete optimization routine can be summarized as follows:

1. Choose the initial value of a of order 1 and set k = 0.

2. Compute the initial set of points x0
1, x

0
2, . . . , x

0
n ∈ Sd.

3. Compute xk+1
i , i = 1, 2, . . . , n using (2.1) together with (2.4), (2.6), (2.5) and

(2.3).

4. Compute total energy difference ΔIk = Ik − Ik+1 where Ik is the total energy in
step k, i.e. Ik = I(xk

1, x
k
2, . . . , x

k
n). IfΔIk < ΔImin = ..., set a := δ′a where 0 < δ′ < 1.

Value δ′ = 0.8 turned out to be a good choice.

5. If a > amin, where amin is a constant of small order (10−6 is used), set k := k + 1
and go to step 3.

6. Compute the minimal covering angle.

Since we require the results for different values of n (i.e. n = 3, 4, . . . , 130),
the initial set of points for some value of n, can be chosen by adding additional
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(randomly generated) point to the optimal solution for n − 1. This strategy is
applied in the step 2 of the previous routine.

Computation of the covering angle was done by Monte-Carlo method (de-
scribed in section 3) and verified by spherical coverage verification algorithm from
[9]. It is shown that by taking total N = 109 points, Monte-Carlo method produces
the covering angle which differs by no more than 1% from the exact value (obtained
by spherical coverage verification algorithm). It shows that Monte-Carlo method,
which is much simpler for implementation, obtains a satisfactory good results for
covering angle.

5. Numerical results

This section provides concrete numerical results for potentials given in the previous
section. Results obtained for d = 3 are compared to those available in [6] (which
will be referred as referent results).

5.1. Results in the case d = 3

Using the Newtonian potentialφ(x) = x−1 iterations (2.1) converged fast and results
could be easily obtained in real time. Covering angles are given on Figure 5.1 (left),
together with the referent results from [6].

Fig. 5.1: Results (solid line) obtained using Newtonian potential (left graph) and
logarithmic potential (right graph), compared to the referent results from [6].

It can be seen that the obtained covering angles are in most cases worse, but
close to the ones obtained from the much harder problem of the optimal spherical
covering construction. However, this difference is negligible small for the certain
values of n (for example, n = 4, 5, 6, 7, 12, 23...). This phenomenon can rise a question
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about the characterization of such values of n. It can be also noticed that for these
values of n holds an additional property: covering angle is larger for n + 1 points
than for n points. That behavior is not intuitive.

It is also shown that Riesz-Fisher potential produces the best results for s = −1,
hence we omit the results for other values of s.

The results obtained when using logarithmic potential φ(x) = − log x are shown
and compared to referent results on Figure 5.1 (right). As expected, no significant
difference is found in comparison to Newtonian potential. Again, there are very
good results for some values of n, and results that are up to 10% worse than referent
results from [6].

The results obtained in the case of Lennard-Jones potential are shown and
compared to the referent results on Figure 5.2. As one can see, this solution behaves
in a very similar manner to previous two.

Fig. 5.2: Results (solid line) obtained using Lennard-Jones potential compared to
the referent results from [6].

Finally, we compare our best obtained covering angles for all values of n (com-
bining results from the three potentials) to the referent results. Comparison is given
on Figure 5.3.

It can be seen that our covering angles are not more that 10% larger than the
referent results from [6]. This encourages us to use the same methodology in
higher dimensions and to expect satisfactory results. Those results are given in the
following subsection.

5.2. Results in higher dimensions

As it turned out from the results presented in the previous section, no significant
differences in covering angles are expected for all considered potentials. Hence,
we only give the results for Newtonian potential φ(x) = x−(d−2).
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Fig. 5.3: Our combined results (solid line) compared to referent results from [6]
(dotted line).

Figures 5.4, 5.5 and 5.6 show these results compactly. Note that there are no
referent results which can be used for comparison in this general case. Analyzing
these graphs, we see that there is a similar behavior as in the d = 3 case.

Fig. 5.4: Results for d = 4, 5.

Using the same methodology, one can easily obtain satisfactory results for an
arbitrary dimension d.

6. Conclusion

According to experiments made for d = 3, we can conclude that by solving the
Fekete problem with the forces method, one provides a good approximation of
the optimal solution of spherical coverage construction problem. Moreover, this is
achieved for all well-known potential functions, including Newtonian, logarithmic
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Fig. 5.5: Results for d = 6, 7.

Fig. 5.6: Results for d = 8, 9.

and also (modified) Lennard-Jones potential. The fact that the time complexity is
linear function of d encourages us to use the proposed scheme even for higher values
of d. Moreover, the advantages of proposed method are ease of implementation
and good convergence properties.

The choice of potential still remains an open question, since one may expect
even better results by choosing some other function for the potential. The idea for
using the potentials we used, comes from different physical models (Coulomb law,
molecular forces, etc.), and these are given (together with their derivatives) by nice
analytical expressions. However, the only required criterion is the ability to easily
compute the derivatives (and the forces themselves).
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dexterofnis@gmail.com

Nenad Živić
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