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OF SOME EQUATIONS WITH INFINITE PRODUCTS ∗
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(Dedicated to prof. dr Ljiljana Petković for her 60th birthday)
Abstract. We consider a few modifications of the well known methods for numerical
solving of a equation or a system of equations. Especially, we included Newton’s, the
Newton-Kantorovich and gradient method. The purpose was to adapt them to cases
when the functions are given in the form of infinite products. The examples comprehend
the infinite q-power products and prove that the methods are pretty suitable for them.

1. Introduction

A lot of papers were written about the iterative methods for solving of a non-
linear equation

F(x) = 0,

where F(x) is a continuous operator defined on a nonempty subset of a Banach
space. In a few papers were considered some unusual functions such as continuous
but non-differentiable functions [7] or noncontinuous functions.

Another perspective branch of mathematics is q–calculus. It appears as a con-
nection between mathematics and physics (see [2], [5], [10]). It has a lot of ap-
plications in different mathematical areas, such as: number theory, combinatorics,
orthogonal polynomials, basic hyper geometric functions and other sciences: quan-
tum theory, mechanics and theory of relativity.

Let q � 1. A q–complex number [a]q is defined by

[a]q =
1 − qa

1 − q
, a ∈ C.
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The factorial of a number [n]q and q-binomial coefficient, we define by

[0]q! = 1, [n]q! = [n]q[n − 1]q · · · [1]q,

[
n
k

]
q
=

[n]q!
[k]q![n − k]q!

.

The important role in q–calculus has q-Pochammer symbol defined by

(a; q)0 = 1, (a; q)n =

n−1∏
i=0

(1 − aqi)
(
n ∈N ∪ {+∞}

)
.

The q-derivative of a function f (x) is

Dq f (x) :=
f (x) − f (qx)

x − qx
(x � 0), Dq f (0) := lim

x→0
(Dq f )(x),

and high q-derivatives D0
q f := f , Dn

q f := Dq(Dn−1
q f ), n = 1, 2, 3, . . . .

From the above definition, it is obvious that a continuous function on an interval,
which does not include 0, is continuous q-differentiable.

In q–analysis, q–integral is defined by

Iq( f ) =
∫ a

0
f (t)dq(t) := a(1 − q)

∞∑
n=0

f (aqn)qn.

Notice that according to [10], it holds

I( f ) =
∫ a

0
f (t) dt = lim

q↑1
Iq( f ).

Also, ∫ b

a
f (t)dq(t) :=

∫ b

0
f (t)dq(t) −

∫ a

0
f (t)dq(t).

2. The partial q–derivatives and q–differential

Let f (�x), where �x = (x1, x2, . . . , xn) be a multi variable real continuous function. We
introduce an operator εq,i which multiplies a coordinate of the argument by

(εq,i f )(�x) = f (x1, . . . , xi−1, qxi, xi+1, . . . , xn).

Furthermore,
(εq f )(�x) = (εq,1 · · ·εq,n f )(�x) = f (q�x).

We define partial q–derivative of a function f (�x) to a variable xi by

Dq,xi f (�x) =
f (�x) − (εq,i f )(�x)

(1 − q)xi
(xi � 0), Dq,xi f (�x)

∣∣∣∣
xi=0
= lim

xi→0
Dq,xi f (�x).
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At the similar way, high partial q–derivatives are

D0
q f (�x) = f (�x), Dm

q;xk1
1 ...x

ki
i ...x

kn
n

f (�x) =
(
Dq,xi

(
Dm−1

q;xk1
1 ...x

ki−1
i ...xkn

n

f
))

(�x) ,

m = k1 + · · · + kn, m = 1, 2, . . . .

Obviously,

Dr+s
q,xm

i ,x
n
j
f (�x) = Dr+s

q,xn
j ,x

r
i
f (�x) (i, j = 1, 2 . . . , n) (r, s = 0, 1, . . .).

Also, for an arbitrary �a = (a1, a2, . . . , an) ∈ Rn, we can introduce q–differential

dq f (�x, �a) = (x1 − a1)Dq,x1 f (�a) + (x2 − a2)Dq,x2 f (�a) + · · · + (xn − an)Dq,xn f (�a),

and high q–differentials:

dk
q f (�x, �a) =

(
(x1 − a1)Dq,x1 + · · · + (xn − an)Dq,xn

)k
f (�a)

=
∑

i1+···+in=k
i j∈N0

[k]q!
[i1]q![i2]q! · · · [in]q!

Dk
q,x

i1
i ,···,xin

n

f (�a)
n∏

j=1

xij

j

(
aj/xj; q

)
ij
.

Notice, that a continuous function f (�x) in a neighborhood, which does not include
any point with a zero coordinate, has also continuous q-partial derivatives. More
details can be found in [8] and [11].

3. Numerical computing of infinite products

The exact value of an infinite product can not be evaluated. That is why a few
numerical methods are developed for its approximating. The most simple way is
to omit factors from an index and to compute truncated product

P =
∞∏

k=1

ak ≈ Pn =

n∏
k=1

ak(3.1)

But, it is not an effective method, neither to exactness nor to number of operations.
L. Slater [13] mentioned some computing difficulties for 0.89 < q < 1 that can be
avoided by using the logarithmic form.

The Euler identity

P ≡ (aq; q)∞ =
∞∏

n=1

(1 − aqn) =
∞∑

n=0

(−1)nanqn(n+1)/2

(q; q)n
(|q| < 1) ,(3.2)

enable us to compute an infinite sum instead of the infinite product. A.D. Sokal [14]
proved that the truncated method (3.1) has linear convergence, which is weaker in
comparison with the square convergence of the method (3.2). Computing by the
Euler identity is more precise although it has troubles for q nearby 1 because of
dividing by (q; q)n.
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Example 3.1. Numerical evaluating of infinite product P ≡ (xq; q)∞ for x = 1/3 and q = 1/2
are compared on the next table and illustrated by Figure 3.1.

Members Error (3.1) Error (3.2)
5 4.909 � 10−3 1.483 � 10−9

10 1.523 � 10−4 1.765 � 10−25

20 1.488 � 10−7 6.395 � 10−80

0

1

x

0

1

q

0

1

P

Fig. 3.1: The comparison of the truncated product (smooth yellow surface) and the
Euler identity (mesh surface)

Remark 3.1. L. Gatteschi has introduced the iterative scheme (see [6] or [1])

xn+1 = xn
(q − 1)xn + (3 − q)yn

2yn
, yn+1 = xn+1

yn

qxn + (1 − q)yn
,

with initial values (x0, y0) which have to be related by (1 − q)x0 = (1 + 2a − q)y0.
Then limn→∞ xn = limn→∞ yn = x0(a; q)∞.

The expansions of
∏∞

k=1(1 − qak)(1 − qbk) were studied in [15].

4. On q-Newton method

If in the previous speculation we take n = 1, the system of equations reduce to one
equation f (x) = 0 and the main objects of work are functions of one variable.

T. Ernst [4] introduced the following q-Taylor formula
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f (z) =
n−1∑
k=0

Dk
q f (c)

[k]q!
zk(c/z; q)k + Rn( f , z, c, q),

where Rn( f , z, c, q) is the remainder term determined by

Rn( f , z, c, q) =
∫ t=z

t=c

zn(t/z; q)n

z − t

Dn
q f (t)

[n − 1]q!
dq(t).

Suppose that an equation f (x) = 0 has the unique isolated solution x = ξ. If xn

is an approximation to the exact solution ξ, by using Jackson’s q-Taylor formula,
we have

0 = f (ξ) ≈ f (xn) +Dq f (xn)(ξ − xn),

hence

ξ ≈ xn − f (xn)
Dq f (xn)

.

So, we can construct q-Newton method

xn+1 = xn − f (xn)
Dq f (xn)

.(4.1)

We can rearrange the above expression to the form

xn+1 = xn

⎧⎪⎪⎪⎨⎪⎪⎪⎩1 − 1 − q

1 − f (qxn)
f (xn)

⎫⎪⎪⎪⎬⎪⎪⎪⎭ .(4.2)

This method written in the form

xn+1 = xn − xn − qxn

f (xn) − f (qxn)
f (xn)(4.3)

resembles the method of chords (secants).

Theorem 4.1. Let the equation f (x) = 0 has a unique isolated root x = ξ and a > 0, 1 ≤
p ≤ 2. Let the function f (x) satisfies

(1) |Dq f (x)| ≥Mp−1
1 > 0,

(2) | f (x) − f (y) −Dq f (y)(x − y)| < Lp−1|x − y|p,
where M1 and L are positive constants. Then, for all initial values x0 ∈ (ξ − b, ξ + b),
where b = min{a,M1/L}, the q-Newton method converges to the exact solution of the
equation f (x) = 0 and it is valid

|ξ − xn| ≤
(

L
M1

)pn−1

|ξ − x0|pn
.
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Proof. We can write q-Newton method (4.1) in the form

Dq f (xn)(xn+1 − xn) = − f (xn).

From the condition (2),we have

| f (ξ) − f (xn) −Dq f (xn)(ξ − xn)| < Lp−1|ξ − xn|p.
Hence, using f (ξ) = 0,we yield

|Dq f (xn)(ξ − xn+1)| < Lp−1|ξ − xn|p.
By the condition (1),we have

|ξ − xn+1| < Lp−1

|Dq f (xn)| |ξ − xn|p <
( L

M1

)p−1
|ξ − xn|p.

Now, if xn ∈ (ξ − b, ξ + b), then

|ξ − xn+1| <
( L

M1

)p−1
bp =

( L
M1

)p−1
bp−1b ≤ b.

Denote by c = L/M1. Now

|ξ − xn+1| < cp−1|ξ − xn|p ⇒ c |ξ − xn+1| < cp|ξ − xn|p,
wherefrom we get the final conclusion. �

Our purpose is to formulate and prove the theorem for scanning the conver-
gence of an iterative process

xk+1 = Φ(xk) (k = 0, 1, 2, . . .),

by q-analysis.

Theorem 4.2. Suppose that Φ(x) is a continuous function on [a, b] (0 � [a, b]), which
satisfies the following conditions:

(1) Φ : [a, b] → [a, b],

(2)
(
∀q ∈ (min{a, b}/max{a, b}, 1)

)(
∀x ∈ (a, b)

)
:
∣∣∣Dq f (x)

∣∣∣ ≤ λ < 1.

Then the iterative process xk+1 = Φ(xk), k = 0, 1, 2, . . . , with initial value x0 ∈ [a, b], is
converging to the fixed point of Φ(x), i.e.,

lim
k→∞

xk = ξ, Φ(ξ) = ξ.
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Proof. Notice that for a continuous function Φ(x) on [a, b] (0 � [a, b]), for all x and y
such that a < x < y < b, it is valid

Φ(y) −Φ(x) = Dx/yΦ(y)(y− x), Φ(y) −Φ(x) = Dy/xΦ(x)(y− x).

Consider

ξ = x0 +

∞∑
k=0

(xk+1 − xk), Sn = x0 +

n∑
k=0

(xk+1 − xk).(4.4)

Let x(M)
k = max{xk, xk−1}, x(m)

k = min{xk, xk−1} and q = x(m)
k /x

(M)
k . Now, we have

Φ(xk) −Φ(xk−1) = DqΦ(x(M)
k )(xk − xk−1).

So, it is valid
∣∣∣xk+1 − xk

∣∣∣ = ∣∣∣DqΦ(x(M)
k )

∣∣∣ |xk − xk−1| ≤ λ |xk − xk−1|.
Since ∣∣∣xk+1 − xk

∣∣∣ ≤ λk|x1 − x0|,
we get

∞∑
k=0

|xk+1 − xk| ≤ |x1 − x0|
∞∑

k=0

λk =
|x1 − x0|
1 − λ .

Hence, the series (4.4) converges and

ξ = lim
n→∞ Sn = lim

n→∞ xn+1.

Since Φ(x) is a continuous function, we have

ξ = lim
n→∞ xn+1 = lim

n→∞Φ(xn) = Φ( lim
n→∞ xn) = Φ(ξ). �

Definition 4.1. An iterative method xn+1 = Φ(xn) (n = 0, 1, 2, . . .) with the fixed
point ξ, has (r; q)-order of convergence, if there exists Cr ∈ R+ such that, for large
enough n, it is valid

|ξ − xn+1| < Cr|ξr(xn/ξ; q)r|.

Theorem 4.3. ([11]) Let f (x) be a continuous function on [a, b] and Rn( f , z, c, q), z, c ∈
(a, b) be the remainder term in q–Taylor formula. Then it exists q̂ ∈ (0, 1) such that for all
q ∈ (q̂, 1), can be found ξ ∈ (a, b) between c and z, which satisfies

Rn( f , z, c, q) =
Dn

q f (ξ)

[n − 1]q!

∫ t=z

t=c

zn(t/z; q)n

z − t
dq(t) =

Dn
q f (ξ)

[n]q!
zn(c/z; q)n.

Now, we are ready to prove the main theorem of this section.
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Theorem 4.4. Suppose that a function f (x) is continuous on a segment [a, b] and that
the equation f (x) = 0 has a unique isolated solution ξ ∈ (a, b). If the conditions

|Dq f (x)| ≥M1, |D2
q f (x)| ≤M2,

are satisfied for some positive constants M1 and M2 and all x ∈ (a, b), then there exists
q̂ ∈ (0, 1), such that for all q ∈ (q̂, 1), the iterations obtained by q–Newton method satisfy

|ξ − xk+1| ≤ M2

(1 + q)M1
|ξ2(xk/ξ; q)2|,

i.e., q-Newton method has (2; q)–order of convergence.

Proof. From the formulation of q–Newton method, we have

xk+1 − ξ = xk − ξ − f (xk)
Dq f (xk)

,

hence
f (xk) +Dq f (xk)(ξ − xk) = Dq f (xk)(ξ − xk+1).

By using q–Taylor formula of order n = 2 at the point xk for f (ξ), we have

f (ξ) = f (xk) +Dq f (xk)(ξ − xk) + R2( f , ξ, xk, q).

Since f (ξ) = 0,we get

Dq f (xk)(ξ − xk+1) = −R2( f , ξ, xk, q),

i.e.

|ξ − xk+1| = |R2( f , ξ, xk, q)|
|Dq f (xk)| .

According to Theorem 4.3, there exists q̂ ∈ (0, 1) such that for all q ∈ (q̂, 1) it can be
found ξ ∈ (a, b) such that

R2( f , ξ, xk, q) =
D2

q f (ξ)

[2]q
ξ2(xk/ξ; q)2.

Now,

|ξ − xk+1| =
|D2

q f (ξ)|
|Dq f (xk)|

|ξ2(xk/ξ; q)2|
1 + q

.

Using the conditions which function f (x) and its q–derivatives satisfy, we yield the
statement of the theorem. �

Example 4.1. For fixed real numbers b and q ∈ (−1, 1), we consider the equation

f (x) ≡ (x; q)∞ − b = 0,
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with unknown value x. Fine thing in q-Newton method (4.3) is appearance of f (qx) =
(qx; q)∞ − b. It is the function of the same type as f (x) what makes easier the required
computations.

For example, taking b = 24√64/eπ and q = 1/e2π, starting with initial value x0 = 1/2, after
two iterations by q-Newton method we get the approximation with 6 exact digits of the exact
solution x = −1/eπ ≈ −0.0432139 . It is quite in harmony with the known product

∞∏
n=0

(
1 + e−(2k+1)π)

)
=

24

√
64
eπ
.

Example 4.2. For given b and q ∈ (−1, 1), we look for unknown x from

(q; x)∞ ≡
∞∏

n=0

(1 − qxn) = b.

So, for the particular b = 0.0895642804083 and q = 3/4, starting from x0 = 0.5, after 3
iterations by q-Newton method for q = 3/4, we find the approximation for the exact solution
x = 0.538463 . . . ≈ 7/13 .

Example 4.3. For a given q ∈ (−1, 1), for the equation

(−q; x)8
∞ − (q; x)8

∞ − 16q(−q2; x)8
∞ = 0

we get very close approximation of the exact solution x = q2. It is the cutting curve (parabola)
of two surfaces drawn on the Figure 4.1. It comes from known identity

(−q; q2)8
∞ = (q; q2)8

∞ + 16q(−q2; q2)8
∞.

0

1

x
0

1

q

0
1

z

Fig. 4.1: Graphics of the functions z = f1(x, q) ≡ (−q; x)8∞ (yellow-green surface),
z = f2(x, q) ≡ (q; x)8∞ + 16q(−q2; x)8∞ (brown surface) and x = q2 (black line)
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5. On q–Newton-Kantorovich method

For this section, we find motivation in the paper [12] where a modification of the
Newton–Kantorovich method [9] was exposed.

Let
�f (�x) = 0

be a system of nonlinear equations, where

�f (�x) =
(

f1(�x), f2(�x), . . . fn(�x)
)
, �x = (x1, x2, . . .xn) (n ∈N).

The numerous methods have been developed for their solving (see, for example,
[3]).

We will suppose that this system has an isolated real solution �ξ. Using q-Taylor
series of the function �f (�x) around some value �x(m) ≈ �ξ, we have

fi(�ξ) ≈ fi

(
�x(m)

)
+

n∑
j=1

Dq,xj fi
(
�x(m)

)(
ξ j − x(m)

j

)
(i = 1, 2, . . . , n).

We can rewrite this in the following matrix form

�f (�ξ) ≈ �f
(
�x(m)

)
+Wq

(
�x(m)

)(
�ξ − �x(m)

)
,

where
Wq(�x) = Dq

�f (�x) =
[
Dq,xj fi(�x)

]
n×n

is the Jacobi matrix of partial q–derivatives. If the matrix Wq is regular, there exists
the inverse matrix W−1

q , so that we can formulate q–Newton–Kantorovich method
in the form

�x(m+1) = �x(m) −Wq

(
�x(m)

)−1 �f
(
�x(m)

)
.

Theorem 5.1. Let the function �f (�x) has q-partial derivatives to all variables x j (i, j =
1, . . . , n) in a ball K[�x(0),R] = {�x : ‖�x − �x(0)‖ ≤ R}. Suppose that the matrix Wq(�x) is
regular in this ball and the conditions

‖Wq(�x) −Wq(�y)‖ ≤ L‖�x − �y‖,

‖ �f (�x) − �f (�y) −Wq(�y)(�x − �y)‖ ≤ L
2
‖�x − �y‖2,

are satisfied for all�x, �y ∈ K[x(0),R] and a constant L > 0. If there are fulfilled the inequalities

‖Wq

(
�x(0)

)−1‖ ≤ b, ‖Wq

(
�x(0)

)−1 �f
(
�x(0)

)
‖ ≤ a, h = abL ≤ 1/2

and

R > r =
1 − √1 − 2h

h
a,
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then the sequence {�x(m)}m∈N0 converges to the solution �ξ ∈ K[�x(0), r] and it is valid

‖�ξ − �x(m)‖ ≤ a
2m−1

(
2h)2m−1 (m ∈N).

Example 5.1. For known q ∈ (−1, 1), consider a system of equations

f1(x, y) ≡ 2 (xq; q)∞ − (y3q; q)∞ = 0 , f2(x, y) ≡ (x2q; q)∞ + e(yq;q)∞ − 2 = 0 ,

with unknown values x and y.
Especially, for q = 3/4, starting with initial values x0 = y0 = 3/4, after n = 8 iterations

provided by q–Newton–Kantorovich method, we find solution with six exact decimal digits
x = 0.303135835 . . . , y = 0.45229252 . . . ,what is shown on the Figure 5.1.

0.0

0.5

1.0

x

0.0

0.5

1.0

y

0.0

0.2

0.4

z

0.0 0.2 0.4 0.6 0.8 1.0
x0.0

0.2

0.4

0.6

0.8

1.0

y

Fig. 5.1: a) Graphics of the functions z = f1(x, y), z = f2(x, y) and z = 0 (green);
b) approximations of the red solution provided by q-gradient method

6. On q–gradient method

We will consider again a system of nonlinear equations

�f (�x) = 0,

where �f (�x) =
(

f1(�x), f2(�x), . . . fn(�x)
)

with �x = (x1, x2, . . .xn) ∈ Rn, n ∈ N, and assume

that thus system has an isolated real solution �ξ.

Here, we will associate to the function �f (�x) a new function �U(�x) by

U(�x) =
(
�f (�x), �f (�x)

)
=

n∑
i=1

(
fi(x1, . . . , xn)

)2
.
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The function U(�x) is nonnegative for all �x ∈ Rn and vanishes when �f (�x) vanishes.
For solving the mentioned system of equations, we want to construct an iterative

method of the form

�x(k+1) = �x(k) − λk∇qU(�x(k)), (k = 0, 1, . . .),

where
∇qU(�x) = gradqU(�x) = [Dq,x1U(�x) . . . Dq,xnU(�x)]T

and λk is the solution of minimization problem

min
λ

U
(
�x(k) − λ∇qU(�x(k))

)
.

Denote by Φ(λ) the function

Φ(λ) = U
(
�x(k) − λ∇qU(�x(k))

)
=

n∑
i=1

(
fi
(
�x(k) − λ∇qU(�x(k))

))2
.

By q-Taylor expansion of the function fi around point �x(k), the function Φ(λ) can be
approximated by

Φ̃(λ) =
n∑

i=1

(
fi(�x(k)) − λ

(
∇q fi(�x(k)),∇qU(�x(k))

))2
.

Since

dΦ̃(λ)
dλ

= −2
n∑

i=1

(
fi(�x(k)) − λ

(
∇q fi(�x(k)),∇qU(�x(k))

)) (
∇q fi(�x(k)),∇qU(�x(k))

)
,

we will choose λk as the solution of equation

d
dλ
Φ̃(λ) = 0,

i.e.

λk =

∑n
i=1 fi(�x(k))

(
∇q fi(�x(k)),∇qU(�x(k))

)
∑n

i=1

(
∇q fi(�x(k)),∇qU(�x(k))

)2 .

Again, let
Wq(�x) = Dq

�f (�x) =
[
Dq,xj fi(�x)

]
n×n

be the Jacobi matrix of q-partial derivatives. Hence

λk =

(
f (�x(k)),Wq(�x(k))∇qU(�x(k)

)
(
Wq(�x(k))∇qU(�x(k)),Wq(�x(k))∇qU(�x(k))

) .
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Example 6.1. We want to solve the system of nonlinear equations

f1(x, y) ≡ 2(xq; q)∞ − (yq; q)∞ = 0, f2(x, y) ≡ (x2yq; q)∞ − (q; q)∞ = 0.

For the concrete value q = 3/4, taking the initial values x0 = y0 = 1/2, we get the tenth
iteration x = 1.022328910, y = 0.955965476, which is the approximation with 3 exact digits.
On the Figure 6.1, the functions z = f1(x, y) and z = f2(x, y) are drawn. Here, again we notice
the troubles with computing f2(x, y) for some values x > 1 and y > 1.
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Fig. 6.1: The functions z = f1(x, y) (yellow surface) and z = f2(x, y) (brown surface)

On the first figure of Figure 6.2, they are both shown with the horizontal plane and on the
second one, the implicit functions f1(x, y) = 0 and f2(x, y) = 0 and approximations are drawn.
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Fig. 6.2: a) Graphics of the functions z = f1(x, y), z = f2(x, y) and z = 0 (green);
b) approximations of the red solution provided by q-gradient method
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