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IMPROVED HIGHER ORDER METHOD FOR THE INCLUSION OF
MULTIPLE ZEROS OF POLYNOMIALS∗

Ljiljana D. Petković and Mimica R. Milošević

Abstract. Starting from a suitable fixed point relation and employing Schröder’s and
Halley-like corrections,we derive some high order iterative methods for the simultaneous
inclusion of polynomial multiple zeros in circular complex interval arithmetic. These
methods are more efficient compared to the existing inclusion methods based on fixed
point relations. Using the concept of the R-order of convergence of mutually dependent
sequences, we present the convergence analysis of the obtained total-step and single-step
methods. The proposed self-validated methods possess a great computational efficiency
since the acceleration of the convergence rate from four to seven is achieved with only
few additional calculations. Numerical examples illustrate the convergence properties
of the presented methods.

1. Introduction

Self-validated methods for the simultaneous determination of complex zeros
of a given polynomial, realized in complex interval arithmetic, are a very useful
tool for the error estimates of a given set of approximate zeros. Based on the very
important inclusion property, which provides the enclosure of the sought zeros in
each iteration, this class of methods produces resulting disks each of which contains
one and only one zero in every iteration. Due to this property, these methods are
highly appreciated as the most powerful iterative methods for the inclusion of
polynomial zeros.

In this paper we are concerned with the construction of advanced inclusion
methods for the simultaneous determination of polynomial zeros with the special
emphases to the fact that these zeros can be multiple. This work can be regarded as
a continuation of the research on interval versions of Halley-like iterative method
presented in [16] and [26], and discussed later in [17] and [22].
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The paper is organized as follows. Some basic definitions and operations of
circular complex interval arithmetic, necessary for the construction and the con-
vergence analysis of inclusion methods, are given at the end of Introduction. In
Section 2 we develop the total-step methods without and with corrections, while
the convergence analysis of these methods is presented in Section 3. The single-step
versions of these methods are discussed in Section 4, and the numerical examples
are given in Section 5.

The development and convergence analysis of the proposed inclusion methods
need the basic properties of the so-called circular complex arithmetic, introduced
by Gargantini and Henrici [5]. A circular closed region (disk) Z := {z : |z − c| ≤ r}
with center c := mid Z and radius r := rad Z we will denote by parametric notation
Z := {c; r}. In the proof of this lemma and forthcoming assertions, we will use
the following operations and properties of circular complex arithmetic. Let Zk :=
{ck; rk} (k = 1, 2), then

Z1 ± Z2 = {c1 ± c2; r1 + r2},
w · {c; r} = {wc; |w|r} (w ∈ C),
Z1 · Z2 = {c1c2; |c1|r2 + |c2|r1 + r1r2},

{c; r}−1 =
{c̄; r}
|c|2 − r2 (0 � {c; r}), (exact inversion),(1.1)

{c; r}Ic =

{
1
c

;
r

|c|(|c| − r)

}
(0 � {c; r}), (centered inversion),(1.2)

Z1 : Z2 = Z1 · Z−1
2 or Z1 : Z2 = Z1 · ZIc

2 (0 � Z2).

For the basic interval operations +,−, ·, : the inclusion property is valid, that is,

Zk ⊆Wk ⇒ Z1 ∗ Z2 ⊆W1 ∗W2 (k = 1, 2; ∗ ∈ {+,−, ·, :}).

More details about circular arithmetic can be found in the books [1], [15], [18]
and [25]. Throughout this paper disks in the complex plane will be denoted by
capital letters.

2. Total-step methods

Let f be a monic polynomial of degree n ≥ 3 with simple or multiple complex
zeros ζ1, . . . , ζν (2 ≤ ν ≤ n), with respective multiplicities μ1, . . . , μν (μ1+ . . .+μν = n)
and let

Δ0,i = 1,

Δk,i(z) =

k∑
ν=1

(−1)k−ν 1
μi

( 1
μi
+ 1

)
. . .

( 1
μi
+ ν − 1

)∑ k∏
λ=1

1
pλ!

( f (λ)(z)
λ! f (z)

)pλ
,
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where k = 1, 2, . . ., and the second sum on the right-hand side is taken over all
nonnegative integers (p1, . . . , pk) which satisfy p1+2p2+. . .+kpk = k, p1+p2+. . .+pk =
ν.

For example, we have

Δ1,i(z) =
1
μi

f ′(z)
f (z)
, Δ2,i(z) =

1
2μi

( 1
μi
+ 1

)( f ′(z)
f (z)

)2
− 1

2μi

f ′′(z)
f (z)
.

We observe that the function

Ni(z) =
Δ0,i(z)
Δ1,i(z)

= μi
f (z)
f ′(z)

appears in the Schröder iterative method ẑ = z −Ni(z) of the second order, and

Hi(z) =
Δ1,i(z)
Δ2,i(z)

=

⎛⎜⎜⎜⎜⎝(1 + 1/μi

2

) f ′(z)
f (z)

− f ′′(z)
2 f ′(z)

⎞⎟⎟⎟⎟⎠
−1

occurs in cubically convergent Halley’s iterative formula ẑ = z −Hi(z).
In our consideration we will use the abbreviations

Σk,i :=
ν∑

j=1
j�i

μ j

(z − ζ j)k
(k = 1, 2).

The following fixed point relation was derived in [26]:

ζi = z − 1

Hi(z)−1 − f (z)
2 f ′(z)

( 1
μi
Σ2

1,i + Σ2,i

) , (i ∈ Iν := {1, . . . , ν}).(2.1)

Let us define the disk

Sλ,i(X,W) :=
i−1∑
j=1

μ j

(
INV1(z − Xj)

)λ
+

ν∑
j=i+1

μ j

(
INV1(z −Wj)

)λ
(λ = 1, 2),

where X = (X1, . . . ,Xν) and W = (W1, . . . ,Wν) are vectors whose components are
disks and INV1 ∈ {()−1, ()Ic}.

Remark 2.1 According to [14], we write
(
INV1(z − Xj)

)k
rather than INV1(z − Xj)k

since rad
(
INV1(z − Xj)

)k
≤ rad INV1(z − Xj)k (0 � Xj, k = 1, 2).

An interval function F is called complex circular extension of a complex function
f if

F(z) = f (z), (z ∈ Z), F(Z) ⊇ { f (z) : z ∈ Z}.
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If f is a rational function and F is its complex circular extension, then

Zk ⊆Wk (k = 1, . . . , q)⇒ F(Z1, . . . ,Zq) ⊆ F(W1, . . . ,Wq).

In particular, we have

wk ∈Wk (k = 1, . . . , q; wk ∈ C)⇒ f (w1, . . . ,wq) ∈ F(W1, . . . ,Wq).(2.2)

Taking disks Z1, . . . ,Zν containing the zeros ζ1, . . . , ζν instead of these zeros, and
taking z = zi := mid Zi in (2.1), using the inclusion property (2.2) we obtain the
following inclusion,

ζi ∈ zi − INV2

(
Hi(zi)−1 − f (zi)

2 f ′(zi)

[ 1
μi

S2
1,i(Z,Z) + S2,i(Z,Z)

])
,(2.3)

where Z = (Z1, . . . ,Zν) and INV2 ∈ {()−1, ()Ic}.
Let (Z1, . . . ,Zν) := (Z(0)

1 , . . . ,Z
(0)
ν ) be initial disjoint disks containing the zeros

ζ1, . . . , ζν, that is, ζi ∈ Z(0)
i for all i, and let zi = mid Zi. The relation (2.3) suggests

the following total-step method for the simultaneous inclusion of all zeros of f :

Ẑi = zi − INV2

(
Hi(zi)−1 − f (zi)

2 f ′(zi)

[ 1
μi

S2
1,i(Z,Z) + S2,i(Z,Z)

])
,(2.4)

for every i ∈ Iν, where Ẑi denotes a new outer disk approximation to the zero ζi.
The iterative method (2.4) has the order of convergence equal to four (see [15]).

Remark 2.2 Evidently, the main part in the iteration formulas (2.4) is Halley’s
correction H(z). For this reason, these methods as well as their modifications,
which will be considered in this paper, are referred to as Halley-like methods.

Remark 2.3 A discussion concerning the choice between the exact and centered in-
version in the implementation of the method (2.4) is necessary here. Namely, since
the exact inversion gives smaller disks, it seems natural to use the exact inversion.
However, the application of the centered inversion produces the sequence of cen-
ters of resulting disks Ẑi, which coincides with the very fast iterative methods (in
ordinary complex arithmetic). These fast methods significantly force the conver-
gence of the radii, that is, the contraction of the disks which leads to the accelerated
convergence of interval methods. On the other side, the exact inversion gives the
“shifted” centers of inverted disks. For this reason, the use of the exact inversion
can accelerate the convergence to a certain extent when the Schröder corrections
are used and cannot increase the convergence rate applying corrections that appear
in iterative methods of the order higher than two (see [17] for a detailed analysis).
Due to this, we will apply only the centered inversion (1.2), i.e. INV1 = INV2 = ()Ic

in the sequel.

Remark 2.4 The presented methods require initial disks containing the desired
zeros and the knowledge of their multiplicities. Both tasks are very important in
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the theory of iterative interval processes. The problem of obtaining initial disks
containing the desired zeros was studied, for instance, in [2], [7] and [20], while
efficient procedures for the determination of the order of multiplicity can be found
in [8], [9], [10], [12] and [13].

In order to express the proposed methods with Schröder’s correction Ni(zi) and
Halley’s correction Hi(zi) in a unique form, we proceed similarly as in [24] (see, also,
[3], [19], [21], [22], [23]). Both methods can be expressed uniquely by introducing
the additional index λ: λ = 1 (for Schröder’s correction) and λ = 2 (for Halley’s
correction)

Ẑi = zi − INV2

(
H(zi)−1− f (zi)

2 f ′(zi)

[ 1
μi

S2
1,i(Z

(λ),Z (λ)) + S2,i(Z (λ),Z (λ))
])

(2.5)

for i ∈ Iν. In [24] it was proved that the order of convergence of the obtained
improved methods (2.5) is equal λ + 4. Both corrections N(zi) and H(zi) will be
denoted by C(λ)(zi) (λ = 1, 2).

Further acceleration of the convergence speed can be obtained by using cor-
rections of higher order for finding a multiple zero. In this paper we use the
correction of the fourth order obtained from the following two-point method for
solving nonlinear equations proposed in [11]

ẑ = z − u(z) · β + γt(z)
1 + δt(z)

, t(z) =
f ′(z − θu(z))

f ′(z)
,(2.6)

where

θ =
2m

m + 2
, β = −m2

2
, γ =

m(m − 2)
2

( m
m + 2

)−m
, δ = −

( m
m + 2

)−m
,

and m is the multiplicity of the sought zero ζ of a function f (not necessarily
algebraic polynomial in general). The order of convergence of the iterative method
(2.6) is four, that is,

ẑ − ζ = OM

(
(z − ζ)4

)
(2.7)

holds (for the proof, see [11]). HereOM is a symbol which points to the fact that two
complex numbers w1 and w2 have moduli of the same order (that is, |w1| = O(|w2|), O
is the Landau symbol), written as w1 = OM(w2).

In the sequel, we substitute z by the disk approximation Zj of ζ j, and m by
the corresponding multiplicity μj of ζ j. The approximation Zj is replaced by Z∗j,
calculated by (2.4), that is,

Z∗j = Zj − uj ·
β j + γ jt j

1 + δ jt j
= Zj − C(3)

j ,

where we put uj = u(zj), t j = f ′(zj − θ juj)/ f ′(zj) and

θ j =
2μ j

μ j + 2
, β j = −

μ2
j

2
, γ j =

μ j(μ j − 2)
2

( μ j

μ j + 2

)−μ j

, δ j = −
( μ j

μ j + 2

)−μ j

.
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In that manner we have obtained a new method for the simultaneous inclusion of
all simple or multiple zeros of a given polynomial in the form (2.5) for λ = 3.

Remark 2.5 To decrease the total computational cost, before executing any iteration
step it is necessary to calculate first all corrections C(3)

j .

3. Convergence analysis

Let us introduce the abbreviations

r = max
1≤i≤ν

ri, εi = zi − ζi, ε = max
1≤i≤ν

|εi|,

hij = mid
(
zi − Zj + C(3)(zj)

)
, dij =

rj∣∣∣hij

∣∣∣(∣∣∣hij

∣∣∣ − rj

) , �i j =
1
hij
,(3.1)

sk,i =
∑
j�i

μ j�
k
i j (k = 1, 2), ρ1,i =

∑
j�i

μ jdi j, ρ2,i =
∑
j�i

μ j(2|�i j|dij + d2
i j).(3.2)

First we will prove the following assertion.

Lemma 3.1 For the inclusion method (2.5), for λ = 3, the following relations can be stated:

(i) r̂ = OM

(
ε3r

)
;

(ii) ε̂ = OM

(
ε7

)
.

Proof. Let Zj = {zj; rj}. Then zi − Zj + C(3)
j =: {hij; rj}. According to this we obtain

S1,i =
∑
j�i

μ j

{hij; rj} =
∑
j�i

μ j{�i j; dij} = {s1,i;ρ1,i}(3.3)

and

S2,i =
∑
j�i

μ j

(
1

{hij; rj}
)2

=
∑
j�i

μ j{�i j; dij}2(3.4)

=
∑
j�i

μ j{�2
i j; 2|�i j|dij + d2

i j} = {s2,i;ρ2,i}.

Starting from (3.3) we find

S2
1,i = {s1,i;ρ1,i}2 = {s2

1,i; 2|s1,i|ρ1,i + ρ
2
1,i}.(3.5)

Since

H(zi) =
f (zi)(1 + 1/μi

2

)
f ′(zi) − f (zi) f ′′(zi)

2 f ′(zi)

,
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using the notations

δ1,i =
f ′(zi)
f (zi)

and, δ2,i =
f ′(zi)2 − f (zi) f ′′(zi)

f (zi)2 ,

Yi := {yi; ηi} = 1
μi

(
δ2

1,i − S2
1,i(Z

(3),Z (3))
)
+ (δ2,i − S2,i(Z (3),Z (3))),

we find

f (zi)
2 f ′(zi)

Y(zi) =
f (zi)

2 f ′(zi)
{yi; ηi}

= H(zi)−1 − f (zi)
2 f ′(zi)

[ 1
μi

S2
1,i(Z

(3),Z(3)) + S2,i(Z(3),Z(3))
]

=
f (zi)

2 f ′(zi)

[ 1
μi

(
δ2

1,i − S2
1,i(Z

(3),Z(3))
)
+ (δ2,i − S2,i(Z(3),Z(3)))

]
.(3.6)

Finally, the method (2.5) can be written in the form

Ẑi = zi − 2 f ′(zi)/ f (zi)
{yi; ηi} = zi − 2δ1,i

{yi; ηi} = zi − 2δ1,i

{ 1
yi

;
ηi

|yi|(|yi| − ηi)

}
.(3.7)

From the introduced abbreviations (3.1) and (3.2) we obtain the estimates

hij = OM(1), �i j = OM(1), dij = OM(r),
ρ1,i = OM(r), ρ2,i = OM(r), sk,i = OM(1) (k = 1, 2).(3.8)

On the other hand, from the difference

Σ1,i − s1,i =
∑
j�i

μ j

( 1
zi − ζ j

− �i j

)
= −

∑
j�i

μ j
zj − ζ j + C(3)(zj)

(zi − ζ j)hij
,

using relation (2.7) we obtain

Σ1,i − s1,i = OM

(
ε4

)
.

According to this we get

Σ2
1,i − s2

1,i =
(
Σ1,i − s1,i

)(
Σ1,i + s1,i

)
= OM(ε4)(3.9)

and

Σ2,i − s2,i =
∑
j�i

μ j

( 1
(zi − ζ j)2 − �2

i j

)

=
∑
j�i

μ j

( 1
zi − ζ j

− �i j

)( 1
zi − ζ j

+ �i j

)
= OM(ε4).(3.10)
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By virtue of the obtained estimates (3.8), (3.9) and (3.10), and the equalities

δ1,i =
μi

εi
+ Σ1,i and δ2,i =

μi

ε2
i

+ Σ2,i

we obtain from (3.6)

yi =
1
μi

(δ2
1,i − s2

1,i) + (δ2,i − s2,i) =
2μi + 2εiΣ1,i + OM(ε6)

ε2
i

=OM(ε−2)(3.11)

and

ηi =
1
μi

(2|s1,i|ρ1,i + ρ
2
1,i) + ρ2,i = OM(r).(3.12)

Using (3.11) and (3.12) we obtain from (3.7)

ε̂i = εi − 2(μi/εi + Σ1,i)

2μi + 2εiΣ1,i + OM(ε6)

ε2
i

= OM(ε7)

and

r̂i =
2(μi/εi + Σ1,i)ηi

|yi|(|yi| − ηi)
= OM(ε3r). �

The convergence analysis of inclusion methods (2.5) with corrections requires
the following assertion which is a special case of Theorem 3 given in [4] (see also
[6]):

Theorem 3.1 Given the error-recursion

w(m+1)
i ≤ αi

k∏
j=1

(
w(m)

j

)tij
, (i = 1, . . . , k; m ≥ 0),(3.13)

where ti j ≥ 0, αi > 0, 1 ≤ i, j ≤ k, and w(m)
i = ε(m)

i or w(m)
i = r(m)

i . Denote the matrix
of exponents appearing in (3.13) with Tk, that is Tk = [ti j]k×k. If the non-negative matrix
Tk has the spectral radius ρ(Tk) > 1 and a corresponding eigenvector xρ > 0, then all
sequences {w(m)

i } (i = 1, . . . , k) have the R-order at least ρ(Tk).

Let OR(IM) denote the R-order of convergence of an iterative method IM. The
matrix Tk = [ti j] will be called the R-matrix since it is concerned with the R-order
of convergence. Finally, for the inclusion methods (2.5) we can state the following
theorem.

Theorem 3.2 If Z(0)
1 , . . . ,Z

(0)
ν are sufficiently close initial disjoint disks containing the

distinct zeros ζ1, . . . , ζν, then the lower bound of the R-order of convergence of the interval
method (2.5) (λ = 3) is seven.
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Proof. For simplicity, as usual in this type of analysis, we adopt the relation
1 > |ε(0)| = r(0) > 0, which means that we deal with the “worst case” model. This
assumption is of no relevance to the final result of the limit process applied in order
to obtain the lower bound for the R-order of convergence. By virtue of Lemma 3.1
we notice that these sequences behave as follows

ε(m+1) ∼
(
ε(m)

)7
, r(m+1) ∼

(
ε(m)

)3
r(m).

From these relations and Theorem 3.1 we form the R-matrix

T2 =

[
7 0
3 1

]

whose spectral radius is ρ(T2) = 7, and the corresponding eigenvector is xρ =

(2, 1
)
> 0. Hence, according to Theorem 3.1, we obtain

OR

(
(2.5)λ=3

)
≥ ρ (T2) = 7. �

4. Single-step methods

The convergence of methods (2.4) and (2.5) can be accelerated by applying the
Gauss-Seidel approach. In this manner, applying the Gauss-Seidel approach, we
obtain from (2.4) the single-step method

Ẑi = zi − INV2

(
Hi(zi)−1 − f (zi)

2 f ′(zi)

[ 1
μi

S2
1,i(̂Z,Z) + S2,i(̂Z,Z)

])
(i ∈ Iν)(4.1)

and from (2.5) the single-step methods with corrections

Ẑi = zi − INV2

(
Hi(zi)−1 − f (zi)

2 f ′(zi)

[ 1
μi

S2
1,i(̂Z,Z

(λ)) + S2,i(̂Z,Z(λ))
])

(4.2)

for i ∈ Iν and λ = 1, 2, 3.
The methods (4.1), and (4.2) for λ = 1, 2 were examined in [24], where it was

proved that the R-order of convergence of the single-step method (4.1) is at least
3 + xν, where xν > 1 is the unique positive root of the equation xν − x − 3 = 0 and
that the ranges of the lower bounds of the R-order of convergence of the methods
(4.2) are

Ω(1) = (5, 6.646), Ω(2) = (6, 7.855),

for the methods with Schröder’s (λ = 1) and Halley’s corrections (λ = 2), respec-
tively.

Let us examine now the single-step method (4.2) for λ = 3. It is very difficult
to find the R-order of convergence of this method since 2ν sequences of centers
and radii, and the number of zeros ν are involved in the convergence analysis.
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However, we can estimate easily the limit bounds of the R-order taking the limit
cases ν = 2 and very large ν.

First, since the convergence rate of a single-step method becomes almost the
same as the one of the corresponding total-step method when the polynomial
degree is very large, according to Theorem 3.2 we have OR((4.2)λ=3, ν) ≥ 7 for very
large ν.

Consider now the single-step method (4.2) (λ = 3) for ν = 2 and assume that
|ε(0)

1 | = |ε(0)
2 | = r(0)

1 = r(0)
2 (the ”worst case” model). After an extensive calculation we

derive the following estimates

|ε̂1| ∼ |ε1|3|ε2|4, |ε̂2| ∼ |ε1|3|ε2|7, r̂1 ∼ |ε1|3r2, r̂2 ∼ |ε1|3|ε2|3r2.

The corresponding R-matrix and their spectral radii and eigenvectors are:

T4 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
3 4 0 0
3 7 0 0
3 0 0 1
3 3 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ , ρ(T4) = 9, xρ = (1, 1.5, 0.4375, 0.9375) > 0.

Taking into account the previous results, we can state the following assertion.

Theorem 4.1 The ranges of the lower bounds of the R-order of convergence of the single-step
method (4.2) (λ = 3) is

Ω(3) = (7, 9).

Since the increased convergence is attained without any additional calcula-
tions we conclude that the inclusion methods (4.2) possess a high computational
efficiency.

5. Numerical example

The presented algorithms (2.4), (2.5), (4.1), and (4.2) have been tested in solving
many polynomial equations. To provide the enclosure of the zeros in the second
and third iteration that produce very small disks, we have used the program-
ming package Mathematica with multiple precision arithmetic. In realization of all
methods we used only the centered inversion, that is INV1 = INV2 = ()Ic .

Example 1. To find the circular inclusion approximations to the multiple zeros of
the polynomial

f (z) = z9 − 8z8 + 25z7 − 34z6 + 64z4 − 76z3 + 8z2 + 48z − 32,

we implemented the interval methods (2.4), (2.5) (for λ = 1, 2, 3) and (4.2) (for
λ = 1, 2, 3). The exact zeros of f are

ζ1 = −1, z2 = 2, ζ3 = 1 + i, ζ4 = 1 − i
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of the respective multiplicities μ1 = 2, μ2 = 3, μ3 = μ4 = 2. The initial disks were
selected to be Z(0)

i = {z(0)
i ; 0.5},with the centers

z(0)
1 = −1.1 + 0.2i, z(0)

2 = 2.1 − 0.2i, z(0)
3 = 0.8 + 1.2i, z(0)

4 = 0.9 − 1.2i.

The maximal radii of the inclusion disks produced in the first three iterative steps
are given in Table 1, where the denotation A(−q) means A × 10−q.

Table 1: The maximal radii of inclusion disks

r(1) r(2) r(3)

(2.4) 1.89(−2) 2.48(−9) 9.34(−39)
(4.1) 6.03(−3) 3.38(−12) 7.57(−50)

(2.5), λ = 1 2.69(−2) 3.18(−11) 1.81(−60)
(4.2), λ = 1 8.43(−3) 3.27(−14) 1.28(−69)
(2.5), λ = 2 2.77(−2) 3.41(−14) 1.05(−86)
(4.2), λ = 2 9.55(−3) 3.48(−16) 4.76(−96)
(2.5), λ = 3 2.76(−2) 7.21(−15) 3.96(−105)
(4.2), λ = 3 9.71(−3) 9.72(−17) 4.16(−114)

Example 2. We implemented the same interval methods as in Example 1 to find
inclusion disks of multiple zeros of the polynomial

f (z) = z13 − 8z12 + 27z11 − 50z10 + 51z9 − 12z8 − 51z7 + 102z6 − 104z5

+48z4 + 20z3 − 56z2 + 48z − 32.

The exact zeros of f are

ζ1 = −1, z2,3 = 1 ± i, ζ4,5 = ±i, ζ6 = 2

of the multiplicity μ1 = μ2 = μ3 = μ4 = μ5 = 2, μ6 = 3, respectively. We have taken
the following initial disks Z(0)

i = {z(0)
i ; 0.5},with the centers

z(0)
1 = −1.1 + 0.2, z(0)

2 = 1.1 + 0.9i, z(0)
3 = 0.9 − 1.1i,

z(0)
4 = 0.1 + 0.9i, z(0)

5 = 0.1 − 1.2i, z(0)
6 = 2.2 − 0.1i.

The maximal radii of the inclusion disks are given in Table 2.
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Table 2: The maximal radii of inclusion disks

r(1) r(2) r(3)

(2.4) 2.53(−1) 1.22(−7) 3.90(−33)
(4.1) 4.29(−2) 5.60(−10) 3.04(−42)

(2.5), λ = 1 1.44(−1) 1.44(−9) 1.45(−49)
(4.2), λ = 1 4.14(−2) 1.04(−10) 7.58(−56)
(2.5), λ = 2 1.21(−1) 8.18(−12) 7.09(−73)
(4.2), λ = 2 3.55(−2) 7.05(−13) 1.30(−79)
(2.5), λ = 3 1.20(−1) 1.59(−12) 2.23(−87)
(4.2), λ = 3 3.58(−2) 2.25(−13) 5.67(−93)

Example 3. We implemented the same interval methods to find inclusion disks of
multiple zeros of the polynomial

f (z) = z18 + (2 − 2i)z17 − 14z16 − (18 − 26i)z15 + (80 − 12i)z14 + (26 − 118i)z13

−(238− 136i)z12 + (146+ 182i)z11 + (307 − 476i)z10 − (380 − 160i)z9

+(236+ 320i)z8 + (32 − 712i)z7 − (804 − 880i)z6 + (512+ 96i)z5 − (80 + 832i)z4

−(1024− 1152i)z3 − (448− 256i)z2 − (1024− 512i)z − (768− 1024i).

The exact zeros of f are

ζ1 = −1, z2 = −2, ζ3,4 = 1 ± i, ζ5,6 = ±i, ζ7 = 2, ζ8 = −2 + i

of the multiplicity μ1 = 2, μ2 = 3, μ3 = μ4 = μ5 = μ6 = 2, μ7 = 3, μ8 = 2 respectively.
We have taken the initial disks Z(0)

i = {z(0)
i ; 0.4},with the centers

z(0)
1 = −1.2 + 0.1i, z(0)

2 = −2.2 − 0.1i, z(0)
3 = 1.1 + 1.2i, z(0)

4 = 0.9 − 1.1i,
z(0)

5 = −0.1 + 0.8i, z(0)
6 = 0.1 − 1.1i, z(0)

7 = 2.2 − 0.1i, z(0)
8 = −2.2 + 0.9i.

The maximal radii of the inclusion disks are given in Table 3.

Table 3: The maximal radii of inclusion disks

r(1) r(2) r(3)

(2.4) 9.47(−2) 3.91(−7) 8.87(−31)
(4.1) 2.55(−2) 4.76(−9) 1.73(−38)

(2.5), λ = 1 1.64(−1) 8.96(−8) 3.10(−42)
(4.2), λ = 1 1.45(−1) 6.98(−9) 3.22(−48)
(2.5), λ = 2 2.32(−1) 8.34(−10) 1.04(−62)
(4.2), λ = 2 2.32(−1) 2.95(−11) 7.04(−67)
(2.5), λ = 3 2.37(−1) 7.57(−10) 5.98(−70)
(4.2), λ = 3 2.37(−1) 1.21(−10) 2.15(−75)

From the numerical examples presented in Tables 1, 2 and 3, and a lot of other
numerical experiments, we can conclude that the convergence rate of the consid-
ered methods matches well the theoretical convergence speed of these methods
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given in Theorems 3.2 and 4.1. Enormously small disks obtained in the third it-
eration are not required in practice, but we have presented them to point out the
convergence rate and the growing accuracy of inclusion methods with corrections
as the number of iteration steps increases.
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