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COMPUTING GENERALIZED INVERSES
USING MATRIX FACTORIZATIONS

Bilall I. Shaini and Fatmir Hoxha

Abstract. A full-rank representation of A(2)
T,S inverse of a given constant matrix A which is

based on the SVD decomposition and SVD-like decompositions of an appropriate matrix
W is presented. The notion of thin generalized inverses, corresponding to the notion of
thin SVD decomposition, is introduced. Numerical examples which illustrate theoretical
investigations are presented.

1. Introduction

Computation of generalized inverses by means of various matrix decompositions
has been extensively investigated in the scientific literature.

Also, for the sake of completeness, we restate main known results about the
representations of various classes of generalized inverses and the SVD decompo-
sition.

First of all, it is necessary to mention known representations of inner inverses
based on the Singular Value Decomposition (SVD). We restart these results from
[1]:

Let the SVD of A ∈ Cm×n
r be

(1.1) A = U
[
Σr O
O O

]
V∗,

where U∗U = Im and V∗V = In and

(1.2) Σr =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
σ1

. . .
σr

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦ = diag {σ1, . . . , σr} , σ1 ≥ σ2 ≥ · · · ≥ σr > 0.

Then the following statements are valid:
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a) The set of {1}-inverses of A is defined by

(1.3) A{1} = V

[
Σ−1

r X
Y Z

]
U∗, X,Y,Z are arbitrary of appropriate sizes.

In particular, representation (1.5) gives analogous representations for several
classes of inner inverses [1]:

b) The relation Z = YΣrX between X,Y,Z produces a representation of the
general {1, 2}–inverse from (1.5);

c) X = O gives the general {1, 3}–inverse;
d) Y = O gives the general {1, 4}–inverse;
e) the MoorePenrose inverse is defined by the relation X = Y = Z = O.

The weighted Moore–Penrose inverse A†M,N can be expressed from the (M,N)
weighted generalized singular value decomposition (MN−SVD) [17, 18]. Let M,N
be Hermitian positive definite matrices of order m and n, respectively. Let the
weighted generalized SVD of A ∈ Cm×n

r be of the form

(1.4) A = U

[
Σr O
O O

]
V∗,

where U∗MU = Im and V∗N−1V = In, Σr = diag(σ1, . . . , σr), σi =
√
λi and λ1 ≥

· · · ≥ λr are the nonzero eigenvalues of N−1A∗MA = A�A. Then the following
representation of the weighted Moore-Penrose inverse A†M,N is valid:

(1.5) A†M,N = N−1V
[
Σ−1

r O
O O

]
U∗M.

A fast computational method for computing the Moore–Penrose inverse A†
based on the QR decomposition of the matrix A is introduced in [11]. The QR
decomposition is assumed to be defined as in Theorem 3.3.11 from [21]. The
analogous QR decomposition for complex matrices is used from [4] More precisely,
if AP = QR is a QR factorization of A, where P is a permutation matrix Q ∈ Rn×n is

orthogonal and R =

[
R11 R12

0 0

]
, R11 ∈ Rn×n is nonsingular and upper triangular,

then A† = PR†Q∗.
An extension of this representation to the set of outer inverses with prescribed

range and null space is presented in [16]. We restate these results for the sake of
completeness.

Lemma 1.1. [16] Assume that the matrix A ∈ Cm×n
r is given. Let us consider an arbitrary

matrix W ∈ Cn×m
s , s ≤ r. Suppose that the QR factorization of W is of the form

(1.6) WP = QR,
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where P is an m ×m permutation matrix, Q ∈ Cn×n, Q∗Q = In and R ∈ Cn×m
s is an upper

trapezoidal matrix. Assume that P is chosen so that Q and R can be partitioned as

(1.7) Q =
[

Q1 Q2

]
, R =

[
R11 R12
O O

]
=

[
R1
O

]
,

where Q1 consists of the first s columns of the matrix Q and R11 ∈ Cs×s is nonsingular.

If A has a {2}-inverse A(2)
R(W),N(W), then:

(a) R1P∗AQ1 is an invertible matrix;

(b) A(2)
R(W),N(W) = Q1(R1P∗AQ1)−1R1P∗;

(c) A(2)
R(W),N(W) = A(2)

R(Q1),N(R1P∗);

(d) A(2)
R(W),N(W) = Q1(Q∗1WAQ1)−1Q∗1W;

(e) A(2)
R(W),N(W) ∈ A{2}s.

An algorithm for symbolic computation of A(2)
T,S inverses based on the QDR

decomposition is presented in [15]. An efficient algorithm, based on the LDL∗ fac-
torization, for computing {1, 2, 3}, {1, 2, 4} inverses and the Moore-Penrose inverse
of a given rational matrix is developed in [14]. Recently, the canonical form for
the DMP inverse ADAA† of a square matrix A based on the Hartwig-Spindelbck
decomposition is presented in [8].

In the present paper we develop a numerical algorithm for computing A(2)
T,S

inverses which is based on the full rank representation of an appropriately chosen
matrix W arising from its SVD decomposition. An analogous representation of the
outer inverse corresponding to the thin SVD decomposition of W is investigated.
This kind of generalized inverse is called the thin outer A(2)

T,S inverse of A.

The rest of the paper is organized as follows. The second section restates
some familiar concepts and notations. A numerical algorithm for computing A(2)

T,S
inverses which is based on the SVD decomposition of an appropriately chosen
matrix W is developed in the third section. Generalized inverses arising from the
thin SVD factorization of the matrix W is investigated in sections 4 and 5. These
generalized inverses are called thin outer generalized inverses with prescribed
range and null space. Particularly, we investigate the thin Moore-Penrose inverse,
thin weighted Moore-Penrose inverse and thin Drazin inverse in the fifth section.

2. Preliminaries

Following the usual notation, byRm×n
r id denoted the set of all real m×n matrices of

rank r, by I we denote the unit matrix of an appropriate order and O denotes the zero
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matrix of an appropriate order. Furthermore AT, R(A), rank(A) and N(A) denote
the transpose, the range, the rank and the null space of A ∈ Rm×n, respectively.

If A ∈ Rm×n
r , T is a subspace of Rn of dimension t ≤ r and S is a subspace of Rm

of dimension m − t, then A has a {2}-inverse X such that R(X) = T andN(X) = S if
and only if AT ⊕ S = Rm, in which case X is unique and it is denoted by A(2)

T,S. The
outer generalized inverses with prescribed range and null-space are of the special
importance in matrix theory. The {2}-inverses have application in the iterative
methods for solving the nonlinear equations [1, 10] as well as in statistics [6, 7].
In particular, outer inverses play an important role in stable approximations of
ill-posed problems and in linear and nonlinear problems involving rank-deficient
generalized inverse [9, 25]. On the other hand, it is well known that the Moore-
Penrose inverse and the weighted Moore-Penrose inverse A†,A†M,N, the Drazin

and the group inverse AD,A#, as well as the Bott-Duffin inverse A(−1)
(L) and the

generalized Bott-Duffin inverse A(†)
(L) can be presented by a unified approach, as

generalized inverses A(2)
T,S for appropriate choice of matrices T and S. For example,

the next is valid for a rectangular matrix A [1]:

(2.1) A† = A(2)
R(AT),N(AT )

, A†M,N = A(2)
R(A�),N(A�)

,

where M,N are positive definite matrices of appropriate orders and A� = N−1ATM.
For a given square matrix A the next identities are satisfied [1, 3, 20]:

(2.2) AD = A(2)
R(Ak),N(Ak)

, A# = A(2)
R(A),N(A),

where k = ind(A). If A is a L-positive semi-definite matrix and L is a subspace of
Cn which satisfies AL ⊕ L⊥ = Cn, S = R(PLA), then the next identities are satisfied
[3, 20, 23]:

(2.3) A(−1)
(L) = A(2)

L,L⊥ , A(†)
(L) = A(2)

S,S⊥ .

For any matrix A of the order m × n consider the following matrix equations in
X, where ∗ denotes conjugate and transpose:

(1) AXA=A (2) XAX=X (3) (AX)∗=AX (4) (XA)∗=XA.

In the case m = n we also consider equations

(5) AX = XA (1k) Ak+1X = Ak.

For a sequenceS of elements from the set {1, 2, 3, 4, 5, 1k}, the set of matrices obeying
the equations with corresponding numbers contained in S is denoted by A{S}. A
matrix from A{S} is called an S-inverse of A. The matrix X = A† is said to be the
Moore-Penrose inverse of A satisfies equations (1)–(4). The group inverse A# is the
unique {1, 2, 5} inverse of A, and exists if and only if the index of A is equal to 1:
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ind(A) = min
k
{k| rank(Ak+1) = rank(Ak)} = 1. A matrix X is said to be the Drazin

inverse of A if it satisfies the matrix equations (1k) (for some positive integer k), (2)
and (5) and it is denoted by X = AD. In the case ind(A) = 1, the Drazin inverse of A
is equal to the group inverse of A, i.e. AD = A#. If A is nonsingular, it is easily seen
that ind(A) = 0 and AD = A−1.

The rank of generalized inverse X is important, and it will be convenient to
consider the subset A{i, j, k}s of A{i, j, k}, consisting {i, j, k}-inverses of rank s (see [1]).

3. SVD rank factorizations and outer inverses

There exist a number of full-rank representations for different generalized inverses
of prescribed rank as well as for the generalized inverses with prescribed range
and kernel. For the sake of completeness, in Proposition 3.1, we restate the general
full–rank representations of outer inverses with prescribed range and null space.

Proposition 3.1. [13] Let A∈Cm×n
r , T be a subspace of Cn of dimension s ≤ r and let S

be a subspace of Cm of dimensions m − s. In addition, suppose that W ∈ Cn×m satisfies
R(W) = T,N(W) = S. Let W has an arbitrary full-rank decomposition, that is W = FG.
If A has a {2}-inverse A(2)

T,S, then:

(1) GAF is an invertible matrix;

(2) A(2)
T,S = F(GAF)−1G = A(2)

R(F),N(G).

Our main strategy can be explained as follows. Since the thin SVD of W is a
possible approach to derive its full rank factorization, it is possible to apply full–
rank representation from Proposition 3.1. This strategy immediately generates a
SVD full-rank representation of outer inverses of A with prescribed range and null
space. According to Proposition 3.1, the matrix A is of the order m × n and the
matrix W is of the order n × m. Assume that the rank of A is equal to r. Also, it is
known result that the rank s of an arbitrary outer inverse of A satisfies 0 ≤ s ≤ r.
Since the case s = 0 corresponds the zero outer inverse X = O, in the sequel we
assume the condition 0 < s ≤ r.

Suppose that the SVD factorization of W is of the general form

(3.1) W = UΣV∗,

where U ∈ Cn×n
s and V ∈ Cm×m

s are column-orthogonal and Σ ∈ Cn×m
s is a diago-

nal matrix with the singular values of W in descent order on the main diagonal.
Suppose that the nonzero singular values of W are ordered as

(3.2) σ1 ≥ σ2 ≥ · · · ≥ σs.

Unfortunately, SVD decomposition (3.1) is not a full-rank factorization of W.
In order to derive a full-rank factorization of W we must consider a thin SVD
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decomposition arising from (3.1). Assume also that the matrices U ∈ Cn×n, V ∈
Cm×m and Σ ∈ Cn×m are partitioned in the blocks

(3.3) U =
[

Us UR

]
, V =

[
Vs VR

]
, Σ =

[
Σs O
O O

]
.

The blocks in (3.3) have the following meaning. The block Us consists of the
first s columns of the matrix U, Vs contains the first s columns of V and Σs =
diag {σ1, . . . , σs} consists of the first s rows and the first s columns from Σ. Also,
UR denotes the remaining n − s columns of U and VR denotes the remaining n − s
columns of V.

Lemma 3.1. Assume that the matrix A ∈ Cm×n
r is given. Let us choose an arbitrary

matrix W ∈ Cn×m
s , 0 < s ≤ r. Let (3.1) be the SVD decomposition of W. Let the matrices

U ∈ Cn×n
s , V ∈ Cm×m

s and Σ ∈ Cn×m
s are partitioned as in (3.3).

Then

A(2)
R(W),N(W) = Us(ΣsV∗sAUs)−1ΣsV∗s(3.4)

= A(2)
R(Us),N(V∗s )

(3.5)

= Us(U∗sWAUs)−1U∗sW.(3.6)

Proof. It is easy to verify that

(3.7) W = Us(ΣsV∗s) =
s∑

i=1

σiuiv∗i

is a full–rank factorization of W. Then (3.4) follows from Proposition 3.1. Further,
(3.5) is implied by the equalities R(W) = R(Us), N(W) = N(V∗s).

The equality (3.6) can be derived from U∗sUs = Is, which impliesΣsV∗s = U∗sW.

Remark 3.1. Computation of the outer inverse by means of (3.4) requires computation of
the matrix inverse. More efficient method for computing (3.4) is to solve a set of equations
(see [20])

(3.8) ΣsV∗sAUsX = ΣsV∗s

with respect to unknown matrix X ∈ Cn×m and then compute the matrix product

(3.9) A(2)
R(Us),N(V∗s )

= UsX.

In accordance with the representations introduced in Lemma 3.1 and the com-
ment stated in Remark 3.1 it is possible to state the following Algorithm 3..1.

Using the results of Lemma 3.1 and taking into account (2.1)–(2.3), we get the
following particular results.
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Algorithm 3..1 SVD method for computing outer inverse.

Require: A ∈ Cm,n
r .

1: Choose G ∈ Cm,n
s , 0 < s ≤ r.

2: Find SVD decomposition (3.1).
3: Generate matrices Us and Vs as in (3.3).
4: Solve the matrix equation (3.8).
5: Return A(2)

R(Us),N(V∗s )
= A(2)

R(W),N(W) defined in (3.9).

Corollary 3.1. For a given matrix A∈Cm×n
r the following statements are valid.

(3.10) A(2)
R(Us),N(V∗s )

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

A†, W = A∗;
A†M,N, W = A�;
A#, W = A;
AD, W = Ak, k ≥ ind(A);
A(−1)

(L) , R(W) = L, N(W) = L⊥;

A(†)
(L), R(W) = S, N(W) = S⊥.

Example 3.1. In this example we consider the matrix

A =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 2 3 4 1
1 3 4 6 2
2 3 4 5 3
3 4 5 6 4
4 5 6 7 6
6 6 7 7 8

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

and choose the corresponding matrix

W =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−3 −2 0 0 −9 0
−7 6 0 0 −21 0
0 0 0 0 0 0
7 5 0 0 21 0
−4 0 0 0 −12 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.
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SVD decomposition of W is given by

U =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.270344 0.251279 −0.588348 0.719457 0.
0.631629 −0.736802 −0.196116 −0.140382 0.

0. 0. 0. 0. 1.
−0.630777 −0.627665 0. 0.456241 0.
0.360665 0.00425894 0.784465 0.504498 0.

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

Σ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

35.0715 0. 0. 0. 0. 0.
0. 8.06173 0. 0. 0. 0.
0. 0. 0. 0. 0. 0.
0. 0. 0. 0. 0. 0.
0. 0. 0. 0. 0. 0.

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

V =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−0.316227 −0.00085836 0. −0.948683 0. 0.
0.00271437 −0.999996 0. 0. 0. 0.

0. 0. 0. 0. 0. 1.
0. 0. 0. 0. 1. 0.

−0.94868 −0.00257508 0. 0.316228 0. 0.
0. 0. 1. 0. 0. 0.

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

Further, we have

U2 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.270344 0.251279 −0.588348 0.719457 0.
0.631629 −0.736802 −0.196116 −0.140382 0.

0. 0. 0. 0. 1.
−0.630777 −0.627665 0. 0.456241 0.
0.360665 0.00425894 0.784465 0.504498 0.

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

Σ2 =

[
35.0715 0.

0. 8.06173

]
,

V2 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−0.316227 −0.00085836
0.00271437 −0.999996

0. 0.
0. 0.

−0.94868 −0.00257508
0. 0.

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

Outer inverse of A with prescribed range and null space is, according to (3.4), equal to

A(2)
R(Us),N(V∗s )

= A(2)
R(W),N(W) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.0249788 −0.152625 0. 0. 0.0749365 0.
0.0808637 −0.222904 0. 0. 0.242591 0.

0. 0. 0. 0. 0. 0.
−0.0575783 0.360288 0. 0. −0.172735 0.

0.03895 −0.170195 0. 0. 0.11685 0.

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

The authors of the paper [16] proved that the the full–rank representation of the
outer inverse A(2)

R(W),N(W) defined in Proposition 3.1 is invariant with respect to the
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choice of the full–rank factorization of W. In the following Corollary 3.2 we show
that the same statements holds for the SVD full-rank decomposition of W.

Corollary 3.2. Assume that all assumptions of Lemma 3.1 are valid and W = FG is an
arbitrary full–rank factorization of W. Then

(3.11) Us(ΣsV∗sAUs)−1ΣsV∗ = F(GAF)−1G

Proof. Applying Lemma 4.1 and Proposition 3.1, part (2), we conclude

Us(ΣsV∗AUs)−1ΣsV∗ = A(2)
R(W),N(W)

Now, using R(W) = R(F) andN(W) = N(G) we immediately derive

Us(ΣsV∗AUs)−1ΣsV∗ = A(2)
R(F),N(G)

= F(GAF)−1G,

which completes the proof.

4. TSVD rank factorizations and outer inverses

Our assumption is that the nonzero singular values of W are ordered as in (3.2). and
(3.7) is a full-rank factorization of W. But, the situation when the matrix ΣsV∗sAUs

is ill-conditioned frequently occurs. In these cases, it is impossible to compute the
inverse (ΣsV∗sAUs)−1. Therefore, computation of outer inverse by the representation
(3.4) is jeopardized. We propose a solution based on further truncations of the SVD
decomposition of W.

Lemma 4.1. Assume that the matrix A ∈ Cm×n
r is given. Let us consider an arbitrary

matrix W ∈ Cn×m
s , s ≤ r. Suppose that the nonzero singular values of W are ordered as

in (3.2). Let us choose an integer 0 < t ≤ s and a small real number ε > 0 such that the
following inequalities hold:

σ1 ≥ σ2 ≥ · · · ≥ σt 	 ε ≥ σt+1 ≥ · · · ≥ σs.

Assume also that U and V are partitioned as

(4.1) U =
[

Ut U[t,s] UR

]
, V =

[
Vt V[t,s] VR

]
,

where Ut (resp. Vt) consists of the first t columns u1, . . . , ut of the matrix U (resp. of
the first t columns v1, . . . , vt of the matrix V), U[t,s] (resp. V[t,s]) consists of the columns
ut+1, . . . , us from U (resp. of the columns vt+1, . . . , vs from V) and UR (resp. VR) consists
of the last n− s columns of the matrix U (resp. V). Also, the matrixΣ can be partitioned as

Σ =

⎡⎢⎢⎢⎢⎢⎢⎣
Σt O O
O Σ[t,s] O
O O O

⎤⎥⎥⎥⎥⎥⎥⎦ ,
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where Σt = diag {σ1, . . . , σt} and Σ[t,s] = diag {σt+1, . . . , σs}.
Under the assumption that ΣtV∗t AUt is invertible, i.e. rank(ΣtV∗tAUt) = t, we get

Ut(ΣtV∗tAUt)−1ΣtV∗t = A(2)
R(W(t)),N(W(t))

= A(2)
R(Ut),N(V∗t )

(4.2)

= Ut(U∗t W(t) AUt)−1U∗t W(t),(4.3)

where the matrix W(t) is defined by

(4.4) W(t) = Ut(ΣtV∗t ) =
t∑

i=1

σiuiv∗i .

Proof. We have that (4.4) is a full-rank factorization of the matrix W(t) of rank t
whose singular values are ordered as σ1 ≥ · · · ≥ σt. According to Proposition 3.1
we have

Ut(ΣtV∗tAUt)−1ΣtV∗t = A(2)
R(W(t)),N(W(t) )

= A(2)
R(Ut),N(ΣtV∗t )

.

The rest of the proof of the statements (4.2) follows from invertibility of matrices
Σt.

Finally, (4.3) can be derived from ΣtV∗t = U∗tUtΣtV∗t = U∗tW(t).

A commendable method for computing (4.2) is to solve a set of equations (see
[20])

(4.5) V∗t AUtX = V∗t

and then compute A(2)
R(Ut),N(V∗t )

as the matrix product

(4.6) A(2)
R(Ut),N(V∗t )

= Ut X.

Remark 4.1. The number t ≤ s in Lemma 4.1 is proposed to avoid relatively small singular
values of W and improve numerical stability of representations (3.4) and (3.6). Full–rank
representation of W(t) defined in (4.4) we denote by the TSVD full–rank factorization of
W(t) in the case t < s and by the TSVD full–rank factorization of W in the case t = s.

The number t ≤ s is chosen so that W(t) has numerical rank equal to t. Clearly,
we have W(s) =W.

Example 4.1. In this example we consider the matrices A and W from (3.1). But, in this
case we use thin SVD decomposition of W associated with the largest singular value of A
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(i.e. defined by t = 1). This gives

U1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.270344
0.631629

0.
−0.630777
0.360665

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, Σ1 =

[
35.0715

]
, V1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−0.316227
0.00271437

0.
0.

−0.94868
0.

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

Outer inverse of A with prescribed range and null space is, according to (3.4), equal to

A(2)
R(U1),N(V∗1)=A(2)

R(W(1)),N(W(1))

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.0505971 −0.000434307 0. 0. 0.151791 0.
0.118214 −0.00101471 0. 0. 0.354643 0.

0. 0. 0. 0. 0. 0.
−0.118055 0.00101334 0. 0. −0.354165 0.
0.0675014 −0.000579407 0. 0. 0.202504 0.

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

where

W(1) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−2.99826 0.025736 0. 0. −8.99478 0.
−7.0051 0.0601292 0. 0. −21.0153 0.

0. 0. 0. 0. 0. 0.
6.99566 −0.0600481 0. 0. 20.987 0.
−3.99997 0.0343343 0. 0. −11.9999 0.

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

is the matrix determined by the largest singular value σ1 = 35.0715 of W.

5. Properties of thin TSVD representation of outer inverses

Our particular interest in this section is to investigate properties of the thin outer
inverse of A in the particular case W = A∗. This choice of the matrix W produces the
thin Moore-Penrose inverse of A, which will be denoted by (A†)t. Truncated SVD
representation of the Moore–Penrose inverse has been widely investigated in the
scientific literature. For example, the most frequently it has been used in the image
restoration [5]. Now, we investigate properties of the generalized inverse (A†)t.
The main problem with which we have to face is: which kind of the generalized
inverse of A is the thin Moore-Penrose inverse of A?

Definition 5.1. Outer generalized inverse A(2)
R(Ut),N(V∗t )

is called thin outer inverse corre-

sponding to the outer inverse A(2)
R(Us),N(V∗s )

, 0 < t ≤ s ≤ r. On the other hand, A(2)
R(Us),N(V∗s )

is called extended generalized inverse corresponding to the outer inverse A(2)
R(Ut),N(V∗t )

.
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5.1. Thin Moore-Penrose inverse

Corollary 5.1. In the case W = A∗, the representation (4.2) produces the following
approximation of the Moore–Penrose inverse (called thin Moore-Penrose inverse of A):

(A†)t = Ut(Σ∗t)
−1V∗t(5.1)

=

t∑
i=1

1
σi

uiv∗i(5.2)

= A(2)
R(Ut),N(V∗t )

,(5.3)

where ui and vi are left and right singular vectors of A∗ and σi is the conjugate of σi. Also,
(A†)t is the outer inverse of A of rank t.

Proof. Since (4.4) is the TSVD full-rank factorization of W = A∗, in conjunction with

A = VΣ∗U∗ = VtΣ
∗
tU
∗
t ,

we have
(A†)t = Ut

(
ΣtV∗t AUt

)−1
ΣtV∗t

= Ut
(
ΣtV∗t (VtΣ

∗
tU
∗
t )Ut

)−1
ΣtV∗t .

Identity (5.1) can be derived using V∗tVt = U∗tUt = It:

(A†)t = Ut
(
ΣtΣ

∗
t
)−1 ΣtV∗t = Ut(Σ∗t)

−1V∗t .

Now, (5.2) follows from (5.1) and Σ∗t = Σt.

It is not difficult to verify that (A†)t is the outer inverse of A of rank t which
satisfies

R((A†)t) = R(Ut), N((A†)t) = N(ΣtV∗t ) = N(V∗t ).

Therefore, (5.3) is verified and the proof is complete.

The truncated SVD expansion (5.1) of the generalized inverse (A†)t, which is
truncated with respect to (A†)r = A†, is widely used in the image restoration so far.
These investigations correspond to the particular choice W(t) = (A∗)(t).

This means that approximations of the Moore-Penrose inverse used in the image
restoration are in essence outer inverses.

Example 5.1. In this example we consider the matrix A from Example 3.1. The corre-
sponding matrix W is given by W = AT, announcing our intention to calculate A†. SVD
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decomposition of W = AT is given by

U =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.31292 0.493469 −0.619628 −0.15694 0.5
0.393065 0.024053 0.00953435 −0.771253 −0.5
0.484763 −0.150838 −0.420949 0.561297 −0.5
0.564908 −0.620255 0.208213 −0.0530158 0.5
0.439847 0.59029 0.628824 0.250348 0.

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

Σ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

25.311 0. 0. 0. 0. 0.
0. 4.12375 0. 0. 0. 0.
0. 0. 0.575726 0. 0. 0.
0. 0. 0. 0.133129 0. 0.
0. 0. 0. 0. 0. 0.

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

V =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.207531 −0.436901 −0.69778 0.170736 0.353553 0.353553
0.304228 −0.625323 0.403151 −0.322313 0.353553 −0.353553
0.31165 −0.212103 0.0574693 0.77755 −0.353553 −0.353553
0.398391 −0.13045 −0.279507 −0.496128 −0.707107 0.
0.50251 0.094348 0.475742 0.110686 0. 0.707107
0.596673 0.589221 −0.206916 −0.0631291 0.353553 −0.353553

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

By the attempt to compute the Moore-Penrose inverse in the form (3.4), which yields
A† = U(ΣV∗AU)−1ΣV∗, ends with a unsuccessful attempt to invert (almost) singular
matrix

ΣV∗AU=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

640.646 0. 0.
−2.4869× 10−14 17.0053 0.
−1.7930× 10−14 −1.9151× 10−15 0.331461
8.4514× 10−15 −2.1580× 10−15 −3.7643× 10−16

0. 0. 0.

4.2633× 10−14 0.
−1.3323× 10−15 −8.8818× 10−16

1.1796× 10−16 2.7756× 10−16

0.0177234 −2.0817× 10−17

0. 0.

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

A possible solution of the problem is usage of a low rank approximation of W by means
of truncated SVD. Then we use the thin SVD full-rank factorization of the order t = 3 to
find outer inverse which approximates A†. The SVD based on 3 greatest singular values of
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AT is defined by

U3 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.31292 0.493469 −0.619628
0.393065 0.024053 0.00953435
0.484763 −0.150838 −0.420949
0.564908 −0.620255 0.208213
0.439847 0.59029 0.628824

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

Σ3 =

⎡⎢⎢⎢⎢⎢⎢⎣
25.311 0. 0.

0. 4.12375 0.
0. 0. 0.575726

⎤⎥⎥⎥⎥⎥⎥⎦ ,

V3 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.207531 −0.436901 −0.69778
0.304228 −0.625323 0.403151
0.31165 −0.212103 0.0574693
0.398391 −0.13045 −0.279507
0.50251 0.094348 0.475742
0.596673 0.589221 −0.206916

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

In this case, Σ3V∗3AU3 is pretty regular matrix:

Σ3V∗3AU3 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1.00357 0.993266 2.01625 2.98963 4.00231 5.99868
2.01753 2.96691 3.07984 3.94906 5.01136 5.99352
2.98724 4.02408 3.9419 5.03707 5.99173 7.00472
4.00121 5.99773 5.00549 5.9965 7.00078 6.99955
0.99431 2.01074 2.97409 4.01654 5.99631 8.0021

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

Corresponding outer inverse of A, which approximates A†, is given by

A(2)
R(U3),N(V∗3)= A(2)

R(W(3)),N(W(3) )

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.701273 −0.504961 −0.08338 0.290136 −0.494517 0.30058
−0.01088 0.007753 0.004554 0.0007971 0.016233 0.009276
0.530146 −0.266069 −0.0282922 0.216767 −0.341672 0.141164
−0.182008 0.246646 0.0596421 −0.0725721 0.169078 −0.15014
−0.821067 0.356107 0.0378239 −0.317035 0.541856 −0.131286

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

where W(3) is the following matrix (close to W =W(4) = AT):

W(3) = U3Σ3VT
3 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1.00357 0.993266 2.01625 2.98963 4.00231 5.99868
2.01753 2.96691 3.07984 3.94906 5.01136 5.99352
2.98724 4.02408 3.9419 5.03707 5.99173 7.00472
4.00121 5.99773 5.00549 5.9965 7.00078 6.99955
0.99431 2.01074 2.97409 4.01654 5.99631 8.0021

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

It is easy to verify that X satisfies Penrose equations (2), (3) and (4).

Further reduction by means of the thin SVD full-rank factorization based on 2 greatest
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singular values of AT produced another {2, 3, 4}-inverse of A. Thin SVD is defined by

U2 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.31292 0.493469
0.393065 0.024053
0.484763 −0.150838
0.564908 −0.620255
0.439847 0.59029

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

Σ2 =

[
25.311 0.

0. 4.12375

]
,

V2 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.207531 −0.436901
0.304228 −0.625323
0.31165 −0.212103
0.398391 −0.13045
0.50251 0.094348
0.596673 0.589221

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

Corresponding {2, 3, 4}-inverse of A, which approximates A†, is given by

A(2)
R(U2),N(V∗2) = A(2)

R(W(2)),N(W(2))

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−0.0497162 −0.0710683 −0.0215285 −0.010685 0.0175027 0.077886
0.00067447 0.00107709 0.00360258 0.00542589 0.008354 0.012703
0.0199557 0.0286997 0.0137271 0.0124017 0.00617316 −0.010125
0.0703463 0.100845 0.0388582 0.0285126 −0.00297557 −0.075308
−0.0589334 −0.0842245 −0.0249456 −0.01175 0.0222378 0.0947124

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

where W(2) is the following matrix (far out of W =W(4) = AT):

W(2) = U2Σ2VT
2 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.754644 1.13708 2.03675 2.88992 4.17203 5.92487
2.02136 2.96469 3.07952 3.95059 5.00875 5.99465
2.81813 4.12179 3.95583 4.96933 6.10703 6.95457
4.08485 5.9494 4.9986 6.03 6.94375 7.02436
1.24693 1.86479 2.95328 4.11773 5.82408 8.07701

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

5.2. Thin weighted Moore-Penrose inverse

The thin outer inverse corresponding to the weighted Moore-Penrose inverse is
denoted by (A†M,N)t. This generalized inverse corresponds to the (M,N) − SVD of
the matrix W(t) = (N−1A∗M)(t) = (A�)(t).

5.3. Thin Drazin inverse

In addition, it is known that in some case the Drazin inverse solution ADb can be
used appropriately in solving linear systems and restricted matrix equations.
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In the monograph [2, Page 123] it is showed that the Drazin inverse solution
ADb solves the real singular linear system Ax = b if and only if b ∈ R(Ak). Also,
ADb is the unique solution of Ax = b provided that x ∈ R(Ak) [2, Page 123]. It is
also known result that the Drazin inverse solution represents the minimal P-norm
solution of the linear system Ax = b, where P is invertible matrix such that P−1AP
is the Jordan canonical form of A and ‖x‖P = ‖P−1x‖2 [22]. The restricted matrix
equation

AXB = D, R(X) ⊂ R(Ak),N(X) ⊃ N(Ak),
k = max{ind(A), ind(B)}

has a unique solution X = ADDBD [19].
These investigations are corresponding to the choice W = Ak, k ≥ ind(A).

The thin Drazin inverse A(2)
R(Ut),N(V∗t )

= (AD)t arises from the TSVD full-rank

representation of the matrix W(t) = (Ak)(t), t ≤ rank(Ak).

Example 5.2. Let us consider the following matrix

A =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

2 0.4 0 0 0 0 0 0 0 0 0 0
−2 0.4 0 0 0 0 0 0 0 0 0 0
−1 −1 1 −1 0 0 0 0 −1 0 0 0
−1 −1 −1 1 0 0 0 0 0 0 0 0
0 0 0 0 1 1 −1 −1 0 0 −1 0
0 0 0 0 1 1 −1 −1 0 0 0 0
0 0 0 −1 −2 0.4 0 0 0 0 0 0
0 0 0 0 2 0.4 0 0 0 0 0 0
0 −1 0 0 0 0 0 0 1 −1 −1 −1
0 0 0 0 0 0 0 0 −1 1 −1 −1
0 0 0 0 0 0 0 0 0 0 0.4 −2
0 0 0 0 0 0 0 0 0 0 0.4 2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
of index ind(A) = 3. Therefore, the Drazin inverse corresponds to the choice W = A3,
which is equal to

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

4.48 1.664 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
−8.32 −2.176 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
−0.4 2.08 4. −4. 0. 0. 0. 0. −5. 3. 1.8 1.
1.6 −1.32 −4. 4. 0. 0. 0. 0. 3. −1. −1. −1.
−1. −1. −1. 3. 3.2 1.6 −3.2 −3.2 0. 0. −1.76 6.8
−1. −1. −1. 3. 3.2 1.6 −3.2 −3.2 0. 0. −2.4 2.
0. 0.8 2. −3.6 −3.2 −1.92 3.2 3.2 −1. 0. 2.4 −4.
0. 0. 0. 2.4 4.8 2.88 −4.8 −4.8 0. 0. −3.2 4.
6.8 −1.76 0. 0. 0. 0. 0. 0. 4. −4. −0.32 1.6
−2. 2.4 0. 0. 0. 0. 0. 0. −4. 4. −0.32 1.6
0. 0. 0. 0. 0. 0. 0. 0. 0. 0. −2.176 −8.32
0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1.664 4.48

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.
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Each of the matrices ΣV∗AU,ΣV∗10AU10,ΣV∗9AU9 is almost singular. Finally, the matrix
ΣV∗8AU8 is pretty regular, so that in this case we get the following thin Drazin inverse of
A:

(AD)8 = Ut

(
Σ8V∗8AU8

)−1
Σ8V∗8 =⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.25 −0.25 −4.9267×10−16 −3.7470×10−16 −6.1453×10−16 −6.9389×10−18

1.25 1.25 1.0963 × 10−15 4.3021 × 10−16 6.2450×10−16 −5.2736×10−16

−1.66406 −0.992187 0.25 −0.25 7.4160×10−16 −1.2490×10−16

−1.19531 −0.679687 −0.25 0.25 1.1501×10−15 −8.3267×10−16

−2.76367 −1.04492 −1.875 −1.25 −1.25 1.25
−2.76367 −1.04492 −1.875 −1.25 −1.25 1.25
14.1094 6.30078 6.625 3.375 5. −3.
−19.3242 −8.50781 −9.75 −5.25 −7.5 4.5
−0.625 −0.3125 1.7418×10−15 9.1295×10−16 1.6011×10−15 −1.7618×10−17

−1.25 −0.9375 4.4409×10−16 1.3878×10−16 5.8027×10−16 2.7756×10−16

5.3620×10−15 2.4746×10−15 3.2734×10−15 1.7816×10−15 2.6092×10−15 −2.0713×10−15

−7.2511×10−16 −3.1442×10−16 −4.4994×10−16 −6.4488×10−16 −4.6320×10−16 5.9241×10−16

5.5815×10−16 5.7723×10−16 7.6328×10−16 2.7756×10−16 1.1670×10−15 1.8906×10−15

−5.4297×10−16 −5.8460×10−16 −6.8001×10−16 −1.8596×10−15 −1.6757×10−15 −3.5497×10−15

−8.2312×10−16 −8.4221×10−16 −0.0625 −0.0625 −1.1068×10−15 0.15625
−7.3639×10−16 −5.8807×10−16 −0.0625 0.1875 0.6875 1.34375

1.25 1.25 1.48437 2.57812 3.32031 6.64062
1.25 1.25 1.48437 2.57812 4.57031 8.51562
−5. −5. −4.1875 −8.5 −10.5078 −22.4609
7.5 7.5 6.375 12.5625 15.9766 33.7891

−1.9552×10−15 −2.1147×10−15 0.25 −0.25 −0.875 −1.625
−1.1675×10−15 −0.25 0.25 −0.875 −1.625
−2.2417×10−15 −1.9262×10−15 −3.2431×10−15 −3.9570×10−15 1.25 1.25
5.0234×10−16 3.9961×10−16 7.1514×10−16 1.0192×10−15 −0.25 0.25

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

In the considered case, we have the coincidence (AD)8 = AD.

6. Conclusion

A full-rank SVD representation of outer inverses with prescribed range and null
space is presented. Corresponding numerical algorithm for computing A(2)

R(W),N(W)
is derived using the SVD decomposition of an appropriately chosen matrix W.
An analogous representation of the outer inverse corresponding to the Using a
thin SVD decomposition of W we derive full-rank SVD representations of the
corresponding outer inverse of A. This kind of generalized inverse is called the
thin outer inverse of A with prescribed range and null space.
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