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A COMMON FIXED POINT THEOREM OF THREE (ψ,ϕ)-WEAKLY
CONTRACTIVE MAPPING IN G-METRIC SPACES

Rashwan A. Rashwan and Samera M. Saleh

Abstract. In this paper, we establish a common fixed point for three mappings under
(ψ,ϕ)-weakly contractive condition in G-metric spaces. Our results generalize and im-
prove many recent fixed point theorems in the literature. We also provide an example to
support our results.

1. Introduction and preliminaries

Banach contraction principle is one of the core subject that has been studied.
It has so many different generalizations with different approaches. One of the
remarkable generalizations, known asΦ-contraction, was given by Boyd and Wong
[7] in 1969. In 1997, Alber and Guerre-Delabriere [6], introduced the notion of a
weak ϕ-contraction which generalizes Boyd and Wong results, so Banachs result.
Recently, inspired from the notion of weak ϕ-contractions, a new concept of (ψ,ϕ)-
contractions was introduced. Khan et al. [12] initiated the use of a control function
in metric fixed point theory, which they called an altering distance function. This
function and its generalizations have been used in fixed point problems in metric
and generalized metric spaces (see e.g. [8], [10], [11] ,[15], [16], [17] and [18]).

Mustafa and Sims [13], [14] generalized the concept of a metric in which the real
number is assigned to every triplet of an arbitrary set which called G-metric space.
Afterwards Mustafa, Sims and others authors introduced and developed several
fixed point theorems for mappings satisfying different contractive conditions in
G-metric spaces, also extend known theorems in metric spaces to G-metric spaces.
Shatanawi obtained fixed points of φ-maps in G-metric spaces [17]. Ding and
Karapinar [9] obtained some fixed point theorems for Meir-Keeler type contractions
in partially ordered G-metric spaces. The study of unique common fixed points of
mappings satisfying strict contractive conditions has been at the center of rigorous
research activity. Study of common fixed point theorems in G-metric spaces was
initiated by Abbas and Rhoades [1], see also ([2]-[5]).
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In this paper, we establish a common fixed point theorem for three mappings
satisfying generalized (ψ,ϕ)-weakly contractive condition. Also we give an exam-
ple satisfying all requirements of our results.

Consistent with [14], the following definitions and results will be needed in the
sequel. Now onwards, N will denote the set of natural numbers.

Definition 1.1. [14] Let X be a nonempty set and let G : X3 → [0,∞) be a function
satisfying:

(G1) G(x, y, z) = 0 if x = y = z,

(G2) 0 < G(x, x, y), for all x, y ∈ X, with x � y,

(G3) G(x, x, y) ≤ G(x, y, z),∀x, y, z ∈ X, with z � y,

(G4) G(x, y, z) = G(x, z, y) = G(y, z, x) = . . . , (symmetry in all three variables),

(G5) G(x, y, z) ≤ G(x, a, a)+ G(a, y, z),∀x, y, z, a ∈ X, (rectangle inequality).

Then the function G is called a G-metric on X, and the pair (X,G) is called a G-metric
space.

Definition 1.2. [14] Let (X,G) be a G-metric space, a sequence (x n) is said to be

(i) G-convergent if for every ε > 0, there exists an x ∈ X, and k ∈ N such that for
all m, n ≥ k,G(x, xn, xm) < ε.

(ii) G-Cauchy if for every ε > 0, there exists an k ∈ N such that for all m, n, p ≥
k,G(xm, xn, xp) < ε, that is G(xm, xn, xp)→ 0 as m, n, p→∞.

(iii) A space (X,G) is said to be G-complete if every G-Cauchy sequence in (X,G)
is G-convergent.

Lemma 1.1. [14] Let (X,G) be a G-metric space. Then the following are equivalent:

(i) (xn) is convergent to x,

(ii) G(xn, xn, x)→ 0 as n→∞,
(iii) G(xn, x, x)→ 0 as n→∞,
(iv) G(xn, xm, x)→ 0 as n,m→∞,

Lemma 1.2. [14] Let (X,G) be a G-metric space. Then the following are equivalent:

(i) The sequence (xn) is G-Cauchy,

(ii) for every ε > 0, there exists k ∈ N such that G(xn, xm, xm) < ε for m, n ≥ k.
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Lemma 1.3. [14] Let (X,G) be a G-metric space. Then the function G(x, y, z) is jointly
continuous in all three of its variables.

Definition 1.3. [14] A G metric space X is symmetric if G(x, y, y) = G(y, x, x) for all
x, y ∈ X.

Proposition 1.1. [14] Every G-metric space (X,G) will define a metric space (X, dG) by

dG(x, y) = G(x, y, y)+ G(y, x, x), ∀x, y ∈ X.

Proposition 1.2. [14] Let (X,G) be a G-metric space. Then for any x, y, z, and a ∈ X, it
follows that

(i) if G(x, y, z) = 0 then x = y = z,

(ii) G(x, y, z) ≤ G(x, x, y)+ G(x, x, z),

(iii) G(x, y, y) ≤ 2G(x, x, y),

(iv) G(x, y, z) ≤ G(x, a, z)+ G(a, y, z),

(v) G(x, y, z) ≤ 2
3 (G(x, y, a)+ G(x, a, z)+ G(a, y, z)),

(vi) G(x, y, z) ≤ G(x, a, a)+ G(y, a, a)+ G(z, a, a),

Definition 1.4. [12] A function ψ : [0,∞)→ [0,∞) is called altering distance func-
tion if

(i) ψ is increasing and continuous,

(ii) ψ(t) = 0 if and only if t = 0.

2. Main results

First we state the following Lemma.

Lemma 2.1. Let f , � and h be self maps on a G-metric space X satisfying

(2.1) ψ(G( f x, �y, hz)) ≤ ψ(M(x, y, z))− ϕ(M(x, y, z)),

where

M(x, y, z) = max{G(x,y, z),G(x, y, �y),G(y, z, hz),G(z, x, f x),
αG( f x, x, �y)+ (1 − α)G(y, �y, hz)},

for all x, y, z ∈ X, where 0 < α < 1, ψ is an altering distance function, and ϕ : [0,∞)→
[0,∞) is a continuous function with ϕ(t) = 0 if and only if t = 0. Then any fixed point of
f is a fixed point of � and h and conversely.
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Proof. Suppose that p ∈ X is such that f p = p. We claim that p = �p = hp. If it is not
then p � �p or p � hp. In the case p � �p and p � hp, we have

ψ(G(p, �p, hp)) ≤ ψ(M(p, p, p))− ϕ(M(p, p, p)),

where

M(p, p, p) = max{G(p, p, p),G(p, p, �p),G(p, p, hp),G(p, p, f p),
αG( f p, p, �p)+ (1 − α)G(p, �p, hp)}
= max{0,G(p, p, �p),G(p, p, hp), αG(p, p, �p)+ (1 − α)G(p, �p, hp)}.

If M(p, p, p) = G(p, p, �p) then

ψ(G(p, �p, hp) ≤ ψ(G(p, p, �p))− ϕ(G(p, p, �p))
≤ ψ(G(p, hp, �p))− ϕ(G(p, p, �p)).

Hence �p = p is a contradiction. Similarly if M(p, p, p) = G(p, p, hp) or M(p, p, p) =
αG(p, p, �p) + (1 − α)G(p, �p, hp). Following the similar arguments to those given
above, we obtain a contradiction for p � �p and p = hp or for p = �p and p � hp.
Hence in all the cases, we conclude that p = �p = hp, The same conclusion holds if
p = �p or p = hp.

Theorem 2.1. Let (X,G) be a complete G-metric space and f , � and h be self maps on X
satisfying inequality (2.1) for all x, y, z ∈ X, where 0 < α < 1, ψ is an altering distance
function, and ϕ : [0,∞) → [0,∞) is a continuous function with ϕ(t) = 0 if and only if
t = 0.. Then f , �, and h have a unique common fixed point in X.

Proof. Let x0 be an arbitrary point of X. Define xn by f x3n = x3n+1, �x3n+1 = x3n+2,
hx3n+2 = x3n+3, n = 0, 1, 2, · · · . If xn = xn+1 for some n, with n = 3m, then p = x3m is
a fixed point of f and by Lemma 2.1 p is a common fixed point for f , � and h. The
same holds if n = 3m+ 1 or n = 3m+ 2.Now, we assume that xn � xn+1 for all n ∈ N.
Then from (2.1) we have

ψ(G(x3n+1, x3n+2, x3n+3)) = ψ(G( f x3n, �x3n+1, hx3n+2))

≤ ψ(M(x3n, x3n+1, x3n+2)) − ϕ(M(x3n, x3n+1, x3n+2)),
(2.2)

where

M(x3n, x3n+1, x3n+2) = max{G(x3n, x3n+1, x3n+2),G(x3n, x3n+1, �x3n+1),
G(x3n+1, x3n+2, hx3n+2),G(x3n+2, x3n, f x3n),
αG(x3n, f x3n, �x3n+1) + (1 − α)G(x3n+1, �x3n+1, hx3n+2)},

yields,

M(x3n, x3n+1, x3n+2) = max{G(x3n, x3n+1, x3n+2),G(x3n, x3n+1, x3n+2),
G(x3n+1, x3n+2, x3n+3),G(x3n+2, x3n, x3n+1),
αG(x3n, x3n+1, x3n+2) + (1 − α)G(x3n+1, x3n+2, x3n+3)}.
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Therefore

M(x3n, x3n+1, x3n+2) = max{G(x3n, x3n+1, x3n+2),G(x3n+1, x3n+2, x3n+3)}.
If for some n ∈ N, M(x3n, x3n+1, x3n+2) = G(x3n+1, x3n+2, x3n+3), then from (2.2) we
obtain

ψ(G(x3n+1, x3n+2, x3n+3)) ≤ ψ(G(x3n+1, x3n+2, x3n+3)) − ϕ(G(x3n+1, x3n+2, x3n+3)).

Hence ϕ(G(x3n+1, x3n+2, x3n+3)) = 0, implies that x3n+1 = x3n+2 = x3n+3, which is a
contradiction. Thus M(x3n, x3n+1, x3n+2) = G(x3n, x3n+1, x3n+2) for each n ∈ N and
(2.2) becomes

ψ(G(x3n+1, x3n+2, x3n+3)) ≤ ψ(G(x3n, x3n+1, x3n+2)) − ϕ(G(x3n, x3n+1, x3n+2))
≤ ψ(G(x3n, x3n+1, x3n+2)).

Since ψ is a nondecreasing function, then

(2.3) G(x3n+1, x3n+2, x3n+3) ≤ G(x3n, x3n+1, x3n+2) =M(x3n, x3n+1, x3n+2).

Similarly, we can be shown that

(2.4) G(x3n+2, x3n+3, x3n+4) ≤ G(x3n+1, x3n+2, x3n+3) =M(x3n+1, x3n+2, x3n+3),

and

(2.5) G(x3n+3, x3n+4, x3n+5) ≤ G(x3n+2, x3n+3, x3n+4) =M(x3n+2, x3n+3, x3n+4).

From (2.3),(2.4) and (2.5) we get

(2.6) G(xn+1, xn+2, xn+3) ≤ G(xn, xn+1, xn+2) =M(xn, xn+1, xn+2).

Therefore we conclude that {G(xn, xn+1, xn+2), n ∈ N} is a nonincreasing sequence of
positive real numbers. Hence there exists δ ≥ 0 such that

lim
n→∞G(xn, xn+1, xn+2) = δ.(2.7)

Letting n→∞, in (2.6), we get

(2.8) lim
n→∞M(xn, xn+1, xn+2) = δ.

Letting n→ ∞, in (2.2) and using (2.7) and (2.8) and the continuity of ψ and ϕ, we
get ψ(δ) ≤ ψ(δ) − ϕ(δ) ≤ ψ(δ) and hence ϕ(δ) = 0. This gives us

(2.9) lim
n→∞G(xn, xn+1, xn+2) = 0.

Moreover, from G3 in Definition 1.1 we obtain

(2.10) lim
n→∞G(xn, xn+1, xn+1) = 0.
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Now, we show that the sequence {xn} is a G-Cauchy sequence in X. Suppose that
{xn} is not. Then there exist ε > 0, and subsequences {xm(k)}, {xn(k)} of {xn} with
n(k) > m(k) > k and m(k) = 3r and n(k) = 3s + 1, where r and s are nonnegative
integers such that

(2.11) G(xm(k), xn(k), xn(k)) ≥ ε.
Further, corresponding to m(k), we can choose n(k) in such a way that it is the
smallest integer with n(k) > m(k) and satisfying (2.11), i.e.

(2.12) G(xm(k), xn(k)−1, xn(k)−1) < ε.

From rectangle inequality and (2.12), we have

ε ≤ G(xm(k), xn(k), xn(k)) ≤ G(xm(k), xn(k)−1, xn(k)−1) + G(xn(k)−1, xn(k), xn(k))
< ε + G(xn(k)−1, xn(k), xn(k)).

(2.13)

Letting k→ ∞ in (2.13) and by (2.10) we conclude that

(2.14) lim
k→∞

G(xm(k), xn(k), xn(k)) = ε.

Again, by the triangle inequality we have

G(xm(k), xn(k), xn(k)+1) ≤ G(xm(k), xn(k), xn(k)) + G(xn(k), xn(k), xn(k)+1)
≤ G(xm(k), xn(k), xn(k)) + G(xn(k), xn(k)+1, xn(k)+2),

(2.15)

and

G(xm(k), xn(k), xn(k)) ≤ G(xm(k), xn(k), xn(k)+1).(2.16)

Letting k→ ∞, in (2.15) and (2.16) and using (2.9) and (2.14) we have

(2.17) lim
k→∞

G(xm(k), xn(k), xn(k)+1) = ε.

On the other hand, we have

G(xm(k), xn(k)+1, xn(k)+1) ≤ G(xm(k), xn(k), xn(k)) + G(xn(k), xn(k)+1, xn(k)+1),(2.18)

and

G(xn(k), xn(k)+1, xm(k)) ≤ G(xn(k), xn(k)+1, xn(k)+1) +G(xn(k)+1, xn(k)+1, xm(k)).(2.19)

Letting k→∞ in (2.18) and (2.19) and using (2.10), (2.14) and (2.17) we find that

(2.20) lim
k→∞

G(xm(k), xn(k)+1, xn(k)+1) = ε.

Similarly, we have

G(xm(k)+1, xn(k), xn(k)+1) ≤ G(xm(k)+1, xm(k), xm(k)) +G(xm(k), xn(k), xn(k)+1)

≤ 2G(xm(k), xm(k)+1, xm(k)+1) + G(xm(k), xn(k), xn(k)+1),
(2.21)
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and

G(xm(k), xn(k), xn(k)+1) ≤ G(xm(k), xm(k)+1 , xm(k)+1) + G(xm(k)+1, xn(k), xn(k)+1).(2.22)

Letting k→∞ in (2.21) and (2.22) and using (2.10) and (2.17) we have

(2.23) lim
k→∞

G(xm(k)+1, xn(k), xn(k)+1) = ε.

Further, we have

(2.24) G(xm(k), xn(k)+1, xn(k)+1) ≤ G(xm(k), xm(k)+1, xn(k)+1),

and

G(xm(k), xm(k)+1, xn(k)+1) ≤ G(xm(k), xm(k)+1, xm(k)+1) +G(xm(k)+1, xm(k)+1, xn(k)+1)

≤ G(xm(k), xm(k)+1, xm(k)+1) +G(xm(k)+1, xn(k), xn(k)+1),
(2.25)

Letting k→∞ in (2.24) and (2.25) and using (2.10), (2.20) and (2.23) we get

(2.26) lim
k→∞

G(xm(k), xm(k)+1, xn(k)+1) = ε.

Also,

G(xm(k)+1, xn(k)+1, xn(k)+1) ≤ G(xm(k)+1, xn(k)+1, xn(k)),(2.27)

and

G(xm(k)+1, xn(k), xn(k)+1) ≤ G(xm(k)+1, xn(k)+1, xn(k)+1) +G(xn(k)+1, xn(k)+1, xn(k)),(2.28)

Letting k→∞ in (2.27) and (2.28) and using (2.10) and (2.23) we have

(2.29) lim
k→∞

G(xm(k)+1, xn(k)+1, xn(k)+1) = ε.

Further, we get

G(xm(k)+1, xn(k)+1, xn(k)+2) ≤ G(xm(k)+1, xn(k)+1, xn(k)+1) + G(xn(k)+1, xn(k)+1, xn(k)+2)

≤ G(xm(k)+1, xn(k)+1, xn(k)+1) + G(xn(k), xn(k)+1, xn(k)+2),
(2.30)

and

G(xm(k)+1, xn(k)+1, xn(k)+1) ≤ G(xm(k)+1, xn(k)+1, xn(k)+2),(2.31)

Letting k→ ∞ in (2.30) and (2.31) and using (2.9) and (2.29) we have

(2.32) lim
k→∞

G(xm(k)+1, xn(k)+1, xn(k)+2) = ε.

Setting x = xm(k), y = xn(k) and z = xn(k)+1 in (2.1) we conclude that

ψ(G(xm(k)+1, xn(k)+1, xn(k)+2)) = ψ(G( f xm(k), �xn(k), hxn(k)+1))

≤ ψ(M(xm(k), xn(k), xn(k)+1)) − ϕ(M(xm(k), xn(k), xn(k)+1)),
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where

M(xm(k), xn(k), xn(k)+1) = max{G(xm(k), xn(k), xn(k)+1),G(xm(k), xn(k), �xn(k)),

G(xn(k), xn(k)+1, hxn(k)+1),G(xn(k)+1, xm(k), f xm(k)),

αG( f xm(k) , xm(k), �xn(k)) + (1 − α)G(xn(k), �xn(k), hxn(k)+1)}
= max{G(xm(k), xn(k), xn(k)+1),G(xm(k), xn(k), xn(k)+1),

G(xn(k), xn(k)+1, xn(k)+2),G(xn(k)+1, xm(k), xm(k)+1),

αG(xm(k)+1, xm(k), xn(k)+1) + (1 − α)G(xn(k), xn(k)+1, xn(k)+2)}.
Taking the limits as k→∞, and using (2.9), (2.17), (2.26) and (2.32) we obtain

(2.33) lim
k→∞

M(xm(k), xn(k), xn(k)+1) = max{ε, 0, αε} = ε.

This gives that

ψ(ε) ≤ ψ(ε) − ϕ(ε).

Hence ε = 0, which is a contradiction. Therefore {xn} is a G-Cauchy sequence. By
G-completeness of X, there exists u ∈ X such that {xn} converges to u as n → ∞.
Now, we prove that f u = u. By (2.1) we have

ψ(G( f u, x3n+2, x3n+3)) = ψ(G( f u, �x3n+1, hx3n+2))
≤ ψ(M(u, x3n+1, x3n+2)) − ϕ(M(u, x3n+1, x3n+2)),

(2.34)

where

M(u, x3n+1, x3n+2) = max{G(u, x3n+1, x3n+2),G(u, x3n+1, �x3n+1),
G(x3n+1, x3n+2, hx3n+2),G(x3n+2, u, f u),

αG( f u, u, �x3n+1) + (1 − α)G(x3n+1, �x3n+1, hx3n+2)}
= max{G(u, x3n+1, x3n+2),G(u, x3n+1, x3n+2),

G(x3n+1, x3n+2, x3n+3),G(x3n+2, u, f u),
αG( f u, u, x3n+2) + (1 − α)G(x3n+1, x3n+2, x3n+3)}.

Letting n→∞ we have

lim
n→∞M(u, x3n+1, x3n+2) = max{0,G(u, u, f u), αG( f u, u, u)} = G( f u, u, u).

On taking the limit as n→∞ in (2.34), we have

ψ(G( f u, u, u) ≤ ψ(G( f u, u, u)) − ϕ(G( f u, u, u))).(2.35)

Hence f u = u. Similarly, it can be shown that �u = u and hu = u. To prove the
uniqueness, suppose that v is another common fixed point of f , � and h, hence

ψ(G(u, v, v)) = ψ(G( f u, �v, hv))
≤ ψ(M(u, v, v))− ϕ(M(u, v, v)),

(2.36)
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where

M(u, v, v) = max{G(u, v, v),G(u, v, �v),
G(v, v, hv),G(v, u, f u),
αG( f u, u, �v) + (1 − α)G(v, �v, hv)}
= max{G(u, v, v),G(v, u, u)}.

Also,

ψ(G(v, u, u)) = ψ(G( f v, �u, hu))
≤ ψ(M(v, u, u))− ϕ(M(v, u, u)),

(2.37)

where

M(v, u, u) = max{G(v, u, u),G(v, u, �u),G(u, u, hu),G(u, v, f v),
αG( f v, v, �u)+ (1 − α)G(u, �u, hu)}
= max{G(v, u, u),G(u, v, v)}.

From (2.36) and (2.37)

ψ(max{G(v, u, u),G(u, v, v)}) = max{(ψG(v, u, u), ψG(u, v, v))}
≤ ψ(max{G(v, u, u),G(u, v, v)})
− ϕ(max{G(v, u, u),G(u, v, v)}),

(2.38)

Hence ϕ(max{G(v, u, u),G(u, v, v)}) = 0, that means u = v is a contradiction. Thus u
is a unique common fixed point of f , � and h.

Corollary 2.1. Let (X,G) be a complete G-metric space and f , �, h : (X,G) → (X,G)
satisfying the following inequality

G( f x, �y, hz) ≤ λmax{G(x,y, z),G(x, y, �y),G(y, z, hz),G(z, x, f x),
αG( f x, x, �y)+ (1 − α)G(y, �y, hz)},

for all x, y, z ∈ X, where 0 < λ, α < 1, Then f , �, and h have a unique common fixed point
in X.

Proof. The result follows by taking ψ(t) = t and ϕ(t) = t − λt where ψ,ϕ : [0,∞)→
[0,∞) in Theorem 2.1.

Corollary 2.2. Let (X,G) be a complete G-metric space. Let f be a self mapping on X
satisfying the following

ψ(G( f x, f y, f z)) ≤ ψ(M(x, y, z))− ϕ(M(x, y, z)),

where

M(x, y, z) = max{G(x,y, z),G(x, y, f y),G(y, z, f z),G(z, x, f x),
αG( f x, x, f y) + (1 − α)G(y, f y, f z)},
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for all x, y, z ∈ X, where 0 < α < 1, ψ is an altering distance function, and ϕ : [0,∞)→
[0,∞) is a continuous function with ϕ(t) = 0 if and only if t = 0. Then f has a unique
fixed point in X.

Motivated by Abbas et al. [4] we give the following example which satisfying
the hypotheses of Theorem 2.1.

Example 2.1. Let X = {0, 1, 2, 3} be a set with G-metric defined by

(x, y, z) G(x, y, z)
(0, 0, 0), (1, 1, 1), (2, 2, 2), (3, 3, 3), 0

(0, 0, 2), (0, 2, 0), (2, 0, 0), (0, 2, 2), (2, 0, 2), (2, 2, 0), 1
(0, 0, 3), (0, 3, 0), (0, 0, 1), (0, 1, 0), (1, 0, 0), (0, 1, 1),
(1, 0, 1), (1, 1, 0), (3, 0, 0), (0, 3, 3), (3, 0, 3), (3, 3, 0),
(1, 1, 2), (1, 2, 1), (2, 1, 1), (1, 2, 2), (2, 1, 2), (2, 2, 1), 3
(1, 1, 3), (1, 3, 1), (3, 1, 1), (1, 3, 3), (3, 1, 3), (3, 3, 1),
(2, 2, 3), (2, 3, 2), (3, 2, 2), (2, 3, 3), (3, 2, 3), (3, 3, 2),
(0, 1, 2), (0, 1, 3), (0, 2, 1), (0, 2, 3), (0, 3, 1), (0, 3, 2),
(1, 0, 2), (1, 0, 3), (1, 2, 0), (1, 2, 3), (1, 3, 0), (1, 3, 2),
(2, 0, 1), (2, 0, 3), (2, 1, 0), (2, 1, 3), (2, 3, 0), (2, 3, 1), 3
(3, 0, 1), (3, 0, 2), (3, 1, 0), (3, 1, 2), (3, 2, 0), (3, 2, 1),

For f , � and h are self mappings of X defined by

x f (x) �(x) h(x)
0 0 0 0
1 0 2 2
2 0 0 0
3 2 0 2

It is clearly that X is a complete G-metric space. We define ψ,ϕ : [0,∞)→ [0,∞) by ψ(t) = t3

and ϕ(t) = t
4 . Then ψ and ϕ have the properties mentioned in Theorem 2.1. We find that

G( f x, �y, hz) ∈ {0, 1}. If G( f x, �y, hz) = 0 then (2.1) holds.
On otherwise one find that if G( f x, �y, hz) = 1 then M(x, y, z) = 3. Hence

ψ(G( f x, �y, hz)) = 1 ≤ ψ(M(x, y, z)) − ϕ(M(x, y, z)) = 27 − 3
4
.

Then condition (2.1) satisfied for all x, y, z ∈ X. Hence all hypotheses of Theorem 2.1 are
satisfied and 0 is the unique common fixed point of f , � and h.
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10. D. Dorić: Common fixed point for generalized (ψ,ϕ)-weak contractions. Appl. Math.
Lett.,22 (2009), 1896–1900.

11. P.N. Dutta and B.S. Choudhury: A generalisation of contraction principle in metric
spaces. Fixed Point Theory Appl. 2008 (2008) Article ID 406368.

12. M. S. Khan, M. Swales and S. Sessa: Fixed point theorems by altering distances between
the points. Bull. Aust. Math. Soc. 30 (1984), 1–9.

13. Z. Mustafa and B. Sims: Some remarks concerning D-metric spaces. Intern. Conf. Fixed
Point. Theory and Applications, Yokohama (2004), 189–198.

14. Z. Mustafa and B. Sims: A new approach to generalized metric spaces. J. Nonlinear
Convex Analysis, 7 (2006), 289–297.

15. O. Popescu: Fixed points for (ϕ,ψ)-weak contractions. Appl Math Lett. 24 (2011), 1–4.

16. B. Samet, C. Vetro and P. Vetro: Fixed point theorems for α − ψ-contractive type
mappings. Nonlinear Anal. 75 (2012), 2154–2165 .

17. W. Shatanawi: Fixed point theory for contractive mappings satisfyingφ-maps in G-metric
spaces. Fixed Point Theory and Applications, 2010, Article ID 181650 (2010), pages
9.

18. Q. Zhang and Y. Song: Fixed point theory for generalized φ-weak contractions. Appl.
Math. Lett. 22(1) (2009), 75–78.

Rashwan A. Rashwan
Assiut University
Faculty of Science
Department of Mathematics
P. O. Box



334 R. A. Rashwan and S. M. Saleh

Assiut, Egypt
rr rashwan54@yahoo.com

Samera M. Saleh
Assiut University
Faculty of Science
Department of Mathematics
Assiut, Egypt

samirasaleh2007@yahoo.com


	FUMI 28 3 (2013) 229--240 [corrected]
	FUMI 28 3 (2013) 241--248 [corrected]
	FUMI 28 3 (2013) 249--256 [corrected]
	FUMI 28 3 (2013) 257--270 [corrected]
	FUMI 28 3 (2013) 271--284 [corrected]
	FUMI 28 3 (2013) 285--296 [corrected]
	FUMI 28 3 (2013) 297--321 [corrected]
	prazna
	FUMI 28 3 (2013) 323--334 [corrected]
	FUMI 28 3 (2013) 335--353 [corrected]



