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ON ESTIMATES FOR THE DUNKL TRANSFORM IN THE SPACE
L2(Rd,wk(x)dx)

M. El Hamma, R. Daher and A. Khadari

Abstract. Two useful estimates are proved for the Dunkl transform in L2(Rd,wk(x)dx),
where wk is a weight function invariant under the action of an associated reflection group,
on certain classes of functions characterized by the generalized continuity modulus.

1. Introduction and preliminaries

In [2], Abilov et al. proved two useful estimates for the Fourier transform in the
space of square integrable functions on certain classes of functions characterized
by the generalized continuity modulus, using a translation operator .
In this paper, we prove two useful estimates in certain classes of functions character-
ized by a generalized continuity modulus and connected with the Dunkl transform
in the space L2(Rd,wk(x)dx) analogs of the statements proved in [2]. For this pur-
pose, we use a generalized spherical mean operator.

We consider the Dunkl operators Di; 1 ≤ i ≤ d, onRd, which are the differential-
difference operators introduced by C.F. Dunkl in [4]. These operators are very
important in pure mathematics and in physics. The theory of Dunkl operators pro-
vides generalizations of various multivariable analytic structures, among others we
cite the exponential function, the Fourier transform and the translation operator.
For more details about these operators see [3, 4, 5]. The Dunkl Kernel Ek has been
introduced by C.F.Dunkl in [6]. This Kernel is used to define the Dunkl transform

Let R be a root system inRd, W the corresponding reflection group, R+ a positive
subsystem of R (see[3, 5, 7, 9, 10]) and k a non-negative and W-invariant function
defined on R.

The Dunkl operators is defined for f ∈ C1(Rd) by
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D j f (x) =
∂ f
∂xj

(x) +
∑
α∈R+

k(α)α j
f (x) − f (σα(x))
〈α, x〉 , x ∈ Rd (1 ≤ j ≤ d).

Here 〈, 〉 is the usual Euclidean scalar product on Rd with the associated norm
|.| and σα the reflection with respect to the hyperplane Hα orthogonal to α, and

α j = 〈α, ej〉, (e1, e2, ..., ed)

being the canonical basis of Rd.

The weight function wk defined by

wk(x) =
∏
ζ∈R+
|〈ζ, x〉|2k(α), x ∈ Rd,

where wk is W-invariant and homogeneous of degree 2γwhere

γ = γ(R) =
∑
ζ∈R+

k(ζ) ≥ 0.

The Dunkl Kernel Ek on Rd ×Rd has been introduced by C.F. Dunkl in [6]. For
y ∈ Rd the function x �→ Ek(x, y) is the unique solution on Rd of

{
D ju(x, y) = yju(x, y) for 1 ≤ j ≤ d
u(0, y) = 1 for all y ∈ Rd

Ek is called the Dunkl Kernel.

Proposition 1.1. [3]

Let z,w ∈ C and λ ∈ C. Then

1. Ek(z, 0) = 1.

2. Ek(z,w) = Ek(w, z).

3. Ek(λz,w) = Ek(z, λw).

4. For all ν = (ν1, ..., νd) ∈Nd, x ∈ Rd, z ∈ Cd, we have

|∂νzEk(x, z)| ≤ |x||ν|exp(|x||Re(z)|),
where

∂νz =
∂|ν|

∂zν1
1 ...∂zνd

d

, |ν| = ν1 + ... + νd.
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In particular

|∂νzEk(ix, z)| ≤ |x|ν,
for all x, z ∈ Rd.

The Dunkl transform is defined for

f ∈ L1
k(Rd) = L1(Rd,wk(x)dx)

by

f̂ (ξ) = c−1
k

∫
Rd

f (x)Ek(−iξ, x)wk(x)dx,

where the constant ck is given by

ck =

∫
Rd

e
−|z|2

2 wk(z)dz.

The Dunkl transform shares several properties with its counterpart in the clas-
sical case, we mention here in particular that Parseval Theorem holds in

L2
k = L2

k(R
d) = L2

k(Rd,wk(x)dx),

when both f and f̂ are in L1
k(Rd), we have the inversion formula

f (x) =
∫
Rd

f̂ (ξ)Ek(ix, ξ)wk(ξ)dξ, x ∈ Rd.

The Dunkl Laplacian Δk is defined by

Δk =

d∑
i=1

D2
i .

In L2
k(R

d), consider the generalized spherical mean operator defined in [8] by

Mh f (x) =
1
dk

∫
Sd−1

τx( f )(hy)dηk(y), (x ∈ Rd, h > 0)

where τx Dunkl translation operator (see [10, 11]), η is the normalized surface mea-
sure on the unit sphere Sd−1 in Rd and set dηk(y) = wk(x)dη(y), ηk is a W-invariant
measure on Sd−1 and dk = ηk(Sd−1).

We see that Mh f ∈ L2
k(Rd) whenever f ∈ L2

k(Rd) and
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‖Mh f ‖L2
k
≤ ‖ f ‖L2

k
,

for all h > 0.

For p ≥ − 1
2 , we introduce the normalized Bessel function of the first kind jp

defined by

jp(z) = Γ(p + 1)
∞∑
j=0

(−1) j( z
2 )2 j

j!Γ( j + p + 1)
, z ∈ C.

The first and higher order finite differences of f (x) are defined as follows

Zh f (x) = (Mh − I) f (x),

where I is the identity operator in L2
k(Rd).

Zm
h f (x) = Zh(Zm−1

h f (x)) = (Mh − I)m f (x) =
m∑

i=0

(−1)m−i(m
i )Mi

h f (x),

where
M0

h f (x) = f (x), Mi
h f (x) =Mh(Mi−1

h f (x))

for i = 1, 2, ....,m and m = 1, 2, .....
The mth order generalized modulus of continuity of function f ∈ L2

k(Rd) is defined
as

Ωm( f , δ) = sup
0<h≤δ

‖Zm
h f (x)‖L2

k
.

Let Wr,m
2,φ(Δk) denote the class of functions f ∈ L2

k(Rd) that have generalized
derivatives satisfying the estimate

Ωm(Δr
k f , δ) = O(φ(δm)), δ −→ 0

i.e:

Wr,m
2,φ(Δk) = { f ∈ L2

k(Rd) / Δr
k f ∈ L2

k(Rd) and Ωm(Δr
k f , δ) = O(φ(δm)), δ −→ 0},

where φ(t) is any nonnegative function given on [0,∞). For the Dunkl Laplacian
Δk, we have Δ0

k f = f , Δr
k f = Δk(Δr−1

k f ), r = 1, 2, ...

In view in [8]:

̂(Mh f )(ξ) = jγ+ d
2−1(h|ξ|) f̂ (ξ)



On Estimates for the Dunkl transform in the Space L2(Rd,wk(x)dx) 289

i.e

Mh f (x) =
∫
Rd

jγ+ d
2−1(h|ξ|) f̂ (ξ)Ek(ix, ξ)wk(ξ)dξ

and

f (x) =
∫
Rd

f̂ (ξ)Ek(ix, ξ)wk(ξ)dξ.

We have

Mh f (x) − f (x) =
∫
Rd

( jγ+ d
2−1(h|ξ|) − 1) f̂ (ξ)Ek(ix, ξ)wk(ξ)dξ.(1.1)

Invoking Parseval’s identity (1.1) gives

‖Mh f (x) − f (x)‖2L2
k
=

∫
Rd

| jγ+ d
2−1(h|ξ|) − 1|2| f̂ (ξ)|2wk(ξ)dξ.

In view [3, 5] we can write

(̂D j f )(y) = iy j f̂ (y); j = 1, ..., d; y ∈ Rd.(1.2)

From formula (1.2), we obtain

Ẑm
h Δ

r
k f (ξ) = |ξ|2r( jγ+ d

2−1(h|ξ|) − 1)m f̂ (ξ).

By Parseval’s identity we have

‖Zm
h Δ

r
k f (x)‖2L2

k
=

∫
Rd

|ξ|4r| jγ+ d
2−1(h|ξ|) − 1|2m| f̂ (ξ)|2wk(ξ)dξ.(1.3)

2. Estimates for the Dunkl transform

Theorem 2.1. Given k, φ, r,m and f ∈ Wr,m
2,φ(Δk), then there exists constants C,C′ > 0

such that the following inequality holds, for all N > 0

∫
|ξ|≥N
| f̂ (ξ)|2wk(ξ)dξ ≤ CN−4r(φ(C′N−m))2.
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Proof. In the terms of jp(x), we have (see [1])

1 − jp(x) = O(1), x ≥ 1.,(2.1)

1 − jp(x) = O(x2), 0 ≤ x ≤ 1.,(2.2) √
hxJp(hx) = O(1), hx ≥ 0.(2.3)

where Jp(x) is Bessel function of the first kind, which is related to Jp(x) by the
formula

jp(x) =
2pΓ(p + 1)

xp Jp(x), for all x ∈ R+.(2.4)

For a given f ∈ Wr,m
2,φ(Δk) and N > 0 let I(N) =

∫
|ξ|≥N

dμ(ξ) where dμ = dμ(ξ) =

| f̂ (ξ)|2wk(ξ)dξ.

In the rest of the proof all integrals are over the |ξ| ≥ N.

Firstly, we have

I(N) ≤
∫
| j|dμ +

∫
|1 − j|dμ.(2.5)

with j = jp(h|ξ|) and p = γ+ d
2 − 1. The parameter h > 0 will be chosen in an instant.

In view of formulas (2.3) and (2.4), there exist a constant C1 > 0 such that

| j| ≤ C1(h|ξ|)−p−1/2.

Then

∫
| j|dμ ≤ C1(hN)−p−1/2I(N).

Choose a constant C2 such that the number C3 = 1 − C1C−p−1/2
2 is positif.

Setting h = C2/N in the inequality (2.5), we have

C3I(N) ≤
∫
|1 − j|dμ.(2.6)

By Hölder inequality the second term in (2.6) satisfies
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∫
|1 − j|dμ =

∫
|1 − j|.1.dμ ≤

(∫
|1 − j|2mdμ

)1/2m (∫
dμ

)1−1/2m

≤
(∫
|ξ|−4r|1 − j|2m|ξ|4rdμ

)1/2m

I(N)1−1/2m

≤ N−2r/m

(∫
|1 − j|2m|ξ|4rdμ

)1/2m

I(N)1−1/2m

In view of (1.3), we conclude that

∫
|1 − j|2m|ξ|4rdμ ≤ ‖Zm

h Δ
r
k f (x)‖2L2

k
.

Therefore

∫
|1 − j|dμ ≤ N−2r/m‖Zm

h Δ
r
k f (x)‖2L2

k
I(N)1−1/2m

For f ∈Wr,m
2,φ(Δk) there exist a constant C > 0 such that

‖Zm
h Δ

r
k f (x)‖2L2

k
≤ C(φ(hm))2.

For h = C2/N, we obtain

C3I(N) ≤ N−2r/m(Cφ((C2/N)m)1/mI(N)1−1/2m.

By raising both sides to the power 2m and simplifying by I(N)2m−1 we finally
obtain

C2m
3 I(N) ≤ N−4r(Cφ((C2/N)m)2,

for all N > 0. The theorem is proved with C′ = Cm
2 .

Theorem 2.2. Let φ(t) = tν, then

(∫
|ξ|≥N
| f̂ (ξ)|2wk(ξ)dξ

) 1
2

= O(N−2r−mν)⇐⇒ f ∈Wr,m
2,φ(Δk),

where, r = 0, 1, ...; m = 1, 2, ....; 0 < ν < 2.
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Proof. We prove sufficiency by using Theorem 2.1 let f ∈Wr,m
2,tν (Δk) then

(∫
|ξ|≥N
| f̂ (ξ)|2wk(ξ)dξ

) 1
2

= O(N−2r−mν).

To prove necessity let

(∫
|ξ|≥N
| f̂ (ξ)|2wk(ξ)dξ

) 1
2

= O(N−2r−mν)

i.e

∫
|ξ|≥N
| f̂ (ξ)|2wk(ξ)dξ = O(N−4r−2mν).

It is easy to show, that there exists a function f ∈ L2
k(Rd) such that Δr

k f ∈ L2
k(Rd)

and

Δr
k f (x) =

(−1)r

ck

∫
Rd
|ξ|2r f̂ (ξ)Ek(iξ, x)wk(ξ)dξ.(2.7)

From formula (2.7) and Parseval’s identity, we have

‖Zm
h Δ

r
k f (x)‖2L2

k
=

∫
Rd

(1 − jγ+ d
2−1(h|ξ|))2m|ξ|4r| f̂ (ξ)|2wk(ξ)dξ.

This integral is divided into two:

∫
Rd
=

∫
|ξ|<N
+

∫
|ξ|≥N

= I1 + I2,

where N = [h−1]. We estimate them separately.

I2 =

∫
|ξ|≥N
|ξ|4r(1 − j)2mdμ(ξ),

with j = jγ+ d
2−1(h|ξ|) and dμ(ξ) = | f̂ (ξ)|2wk(ξ)dξ.

From (2.1) and (2.2), we have the estimate

I2 ≤ C
∫
|ξ|≥N
|ξ|4rdμ(ξ) = C

∞∑
l=0

∫
N+l≤|ξ|≤N+l+l

|ξ|4rdμ(ξ)

≤ C
∞∑
l=0

al(ul − ul+1),
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with al = (N + l + 1)4r and ul =
∫
|ξ|≥N+l

dμ(ξ)

For all integers n ≥ 1, the Abel transformation shows

n∑
l=0

al(ul − ul+1) = a0u0 +

n∑
l=1

(al − al−1)ul − anun+1

≤ a0u0 +

n∑
l=1

(al − al−1)ul

because anun+1 ≥ 0. Moreover by the finite increments theorem, we have al − al−1 ≤
4r(N + l + 1)4r−1. Furthermore by the hypothesis of f there exists C′ > 0 such that,
for all N > 0,

∫
|ξ|≥N

dμ(ξ) ≤ C′N−4r−2mν.

For N ≥ 1, we have

n∑
l=0

(al − al−1)ul ≤ C′
(
1 +

1
N

)4r

N−2mν + 4rC′
n∑

l=1

(
1 +

1
N + l

)4r−1

(N + l)−1−2mν

≤ 24rC′N−2mν + 4r24r−1C′
n∑

l=1

(N + l)−1−2mν.

Finally, by the integral comparison test we have

n∑
l=1

(N + l)−1−2mν ≤
∫ ∞

N
x−1−2mνdx =

1
2mν

N−2mν.

Letting n −→ ∞we see that, for r ≥ 0 and m, ν > 0, there exists a constant C′′ > 0
such that, for all N ≥ 1 and for h > 0,

I2 ≤ C′′N−2mν

Now, we estimate I1 =
∫
|ξ|<N
|ξ|4r(1 − j)2mdμ(ξ). For h|ξ| ≤ 1 we use

|1 − j| ≤ C1
′h2|ξ|2.

Then, we have
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I1 ≤ C
′
1h4m

∫
|ξ|<N
|ξ|4m+4rdμ(ξ) = C

′
1h4m

N−1∑
l=0

∫
l≤|ξ|≤l+1

|ξ|4m+4rdμ(ξ)

≤ C
′
1h4m

N−1∑
l=0

(l + 1)4r+4m(vl − vl+1)

with vl =
∫
|ξ|≥l

dμ(ξ).
Using an Abel transformation and proceeding as with I2 we obtain

I1 ≤ C
′
1h4m

⎛⎜⎜⎜⎜⎜⎝v0 +

N−1∑
l=1

((l + 1)4r+4m − l4r+4m)vl

⎞⎟⎟⎟⎟⎟⎠
≤ C

′
1h4m

⎛⎜⎜⎜⎜⎜⎝v0 + (4r + 4m)C′2
N−1∑
l=1

(l + 1)4r+4m−1l−4r−2mν)

⎞⎟⎟⎟⎟⎟⎠
since vl ≤ C′2l−4r−2mν by hypothesis. From the inequality l + 1 ≤ 2l we conclude

I1 ≤ C
′
1h4m

⎛⎜⎜⎜⎜⎜⎝v0 + C′2
N−1∑
l=1

l4m−2mν−1

⎞⎟⎟⎟⎟⎟⎠ .
As a consequence of a series comparison for α ≥ 1 and α < 1 we have the

inequality,

α
N−1∑
l=1

lα−1 < Nα, for α > 0 and N ≥ 2.

If α = 4m − 2mν > 0 for ν < 2 then we obtain

I1 ≤ C
′
1h4m

(
v0 + C

′′′
N4m−2mν

)
≤ C

′
1h4m

(
v0 + C

′′′
h−4m+2mν

)
since N ≤ 1/h. If h is sufficiently small then v0 ≤ C

′′′
h−4m+2mν. Then we have

I1 ≤ C4h2mν.

Combining the estimates for I1 and I2 gives

‖Zm
h Δ

r
k f (x)‖L2

k
= O(hmν).

The necessity is proved.
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