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ALGORITHM FOR CONSTRAINED WEBER PROBLEM
WITH FEASIBLE REGION BOUNDED BY ARCS

Lev A. Kazakovtsev

Abstract. The author proposes a heuristic algorithm for a special case of constrained
continuous planar facility location problem with the connected region of feasible solutions
bounded by arcs. The algorithm implements a modified Weiszfeld procedure and a
special procedure for searching for the closest feasible solution for a given point. Example
problems were solved. The convergence of the algorithm is proved experimentally for
randomly generated problems. The results were compared with the results of the sample
search.

1. Introduction

The location problem stated by Alfred Weber in 1909 [22, 24, 6] is a continuous
optimization problem of searching for such a point X∗ ∈ Rn that

X∗ = arg min
X∈Rn

f (X) = arg min
X∈Rn

N∑
i=1

wi||Ai − X||.(1.1)

Here, Ai ∈ Rn, i ∈
{
1,N

}
are some known points called demand points, wi ∈

R,wi � 0 are some weight coefficients, || � || is some norm Rn → R [15].
Examples of the Weber problems include the warehouse location [5, 6], po-

sitioning computer and communication networks [14], locating base stations of
wireless networks [20]. They are also useful in approximation theory, statistical es-
timation problem solving [17], signal and image processing and other engineering
applications.

Problem (1.1) was originally formulated by Weber (see [22, 24]) with Euclidean
norm (|| � || = l2(�)) but generalized to lp norms and other metrics [24, 3, 20]. In
[18] and [13], authors consider norm approximation and approximated solution
for Weber problems with an arbitrary metric. In [19], authors solve approximately
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the Weber problem with a special metric induced by measuring distances between
points of an arbitrary surface in R3.

In [11, 9, 25], the authors propose methods for the constrained Weber and
minimax location problems. Algorithms for the constrained Weber problem with
polyhedral feasible region are proposed in [11, 10] and many other papers.

The metric used in practically important location problems depends on various
factors including properties of the transportation means. In the case of public
transportation systems, the price usually depends on the distance. However, some
minimum price is usually defined. For example, the initial fare of the taxi cab may
include some distance, usually 1-5 km. Having rescaled the distances so that this
distance included in the initial price is equal to 1, we can define the price function
dP as

dP(X,Y) = max{||X − Y||, 1}∀X,Y ∈ Rn(1.2)

where || � || is some norm.
In this paper, we consider || � || as Euclidean norm in R2 only (|| � ||2).
The very similar metric, the Radar Screen [1] metric is a norm metric with the

distance function defined as

drs(X,Y) = ||X − Y||rs = min{1, ||X − Y||2}∀X,Y ∈ Rn.(1.3)

The Weber problem with the Radar Screen metric is a special case of the problem
considered in [7]. Unlike (1.3), the distance function if (1.2) is convex.

However, in both cases, (1.2) and (1.3), the problem is decomposed into series of
constrained location problems with Euclidean metric where the area of the feasible
solutions is bounded by arcs. Each of the problems has the feasible region equal to
same intersection of the discs (see Fig. 1.1) with centres in the demand points.

The the sub-problems in the location problem (1.1) with both distance metrics
(1.2) and (1.3) include the constraints

||X − Ai||2 � 1∀i ∈ S<(1.4)

and
||X − Ai||2 � 1∀i ∈ S>,(1.5)

where S<,S> ∈ {1,N}, S< ∩ S> = Ø are some subsets of the set of demand point
indexes.

In [7, 4], authors propose an approach based on the convex Mixed-Integer
Nonlinear Program (MINLP).

We propose a much simpler method based on the Weiszfeld procedure [23] and
prove its convergence experimentally.

The paper is organized as follows. In Chapter 2, we restate some basic defini-
tions and describe existing algorithms and investigate some features of the objective
function. In Chapter 3, we restate the algorithm for the Weber problem with the
connected feasible region bounded by arcs. In chapter 4, we give simple examples
and describe methods used for proving the convergence of the algorithm.



Algorithm for Constrained Weber Problem 273

Fig. 1.1: Illustration of a set of problems (1.1) with constraints (1.4)-(1.5). Each
region Ri has its own set of constraints.

2. Preliminaries

The most common algorithm for Weber problem with the metrics induced by
the lp norms is Weiszfeld procedure [23, 6] described as follows.

Algorithm 2.1. Weiszfeld procedure.

Require: Coordinates and weights of the demand points Ai = (ai
1, a

i
2),wi, i = 1,N, number

of iterations Niter.

Step 1: Calculate the initial point X∗ = (x∗1, x
∗
2) : xr =

∑N
i=1 ai

rwi∑N
i=1 wi

∀ r ∈ {1, 2}; niter = 0.

Step 2: while niter < Niter do:

Step 2.1: niter = niter + 1; ddenom =
∑N

i=1 wi/||Ai −X∗||2.
Step 2.2: x∗∗r =

∑N
i=1

x∗rwi
||X∗−Ai ||2·ddenom

∀i ∈ {1, 2} ; X∗∗ = (x∗∗1 , x
∗∗
2 ).

Step 2.3: X∗ = X∗∗.
Step 2.4: Continue Step 2.

Step 3: STOP, return X∗.

In Step 2 of the Algorithm 2.1, other stop condition can be used [5]:

Algorithm 2.2. Weiszfeld procedure, other stop condition.
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Require: Coordinates and weights of the demand points Ai = (ai
1, a

i
2),wi, i = 1,N, pre-

specified tolerance ε.
Step 1: Calculate the initial point (see Algorithm 2.1); Δ = +∞.
Step 2: while Δ > ε do:

Step 2.1: niter = niter + 1; ddenom =
∑N

i=1 wi/||Ai −X∗||2.
Step 2.2: x∗∗r =

∑N
i=1

x∗rwi
||X∗−Ai ||2·ddenom

∀r ∈ {1, 2} ; X∗∗ = (x∗∗1 , x
∗∗
2 ).

Step 2.3: Δ = ||X∗ − X∗∗||2; X∗ = X∗∗.
Step 2.4: Continue Step 2.

Step 3: STOP, return X∗∗.

The feasible set of our problem given by the constraints (1.4) and (1.5) is gener-
ally non-convex, the objective function f (X) in (1.1) is convex [10].

For constrained optimization problems with convex objective functions, the
solution coincides with the solution of the unconstrained problem or lays on the
border of the forbidden region [9] (moreover, the solution of the constrained prob-
lem is said to be visible from the solution of the unconstrained problem).

Corollary 2.1. If X∗ is a solution of the constrained problem (1.1) with constraints (1.4)
and (1.5) then it is the solution of the unconstrained problem (1.1) or ∃i ∈ {1,N : ||Ai −
X∗||2 = 1}.

The algorithms above solve the unconstrained problem only. Step 1 is optional,
any point can be chosen as initial. However, choosing one of demand points as
initial leads to extremely slow convergence [2, 21]. Choosing the median point
improves the convergence in most cases.

Step 2.2 of Algorithms 2.1,2.2 can lead to generating new point X∗∗ outside the
feasible region given by (1.4)-(1.5). Let us denote this region R f . We assume that
R f � Ø.

For an arbitrary point X ∈ R2, let us denote the closest point in R f :

C(X) = arg min
X′∈R f

||X − X′||2 =
{

X, X ∈ R f ,
arg minX′∈R f ||X − X′||2, X � R f .

(2.1)

Convergence of Weiszfeld procedure is proved for Weber problems with lp
norms [6] where p ∈ [1, 2]. Despite slow convergence problems in special cases [2,
21], this simple procedure based on the first-order necessary conditions is efficient
for planar unconstrained location problems.

The algorithm which we propose is based on the hypothesis below.
Hypothesis 1. If Step 2.2 of Algorithms 2.1,2.2 generates new interim solution

X∗∗ � R f then, having added to Step 2.2 a substitution of this new solution with
C(X∗∗), we have an algorithm for the constrained problem (1.1),(1.4)-(1.5). Let us
denote the sets of points

RAi =

{ {X ∈ R2| ||X − Ai � 1||2}, i ∈ S<
{X ∈ R2| ||X − Ai � 1||2}, i ∈ S> ∀i ∈ S< ∪ S>.
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Obviously,
R f =

⋂
i∈(S<∪S>)

RAi.

For given i ∈ S< ∪ S>, let us denote CAi(X) the point of the set RAi closest to a
given point X.

Lemma 2.1. If X∗∗ � RAi, i ∈ S< ∪ S>, X∗∗ � Ai then the point CAi(X∗∗) closest to X∗∗
is an intersection point of the circle with its center in Ai and a line segment connecting Ai

and X∗∗.

Proof. The distance function D(X) = ||X−X∗∗||2,X ∈ R2 is strictly convex. Therefore,
its minimum point in RAi coincides with the unconstrained minimum point or
belongs to the borderline of the region RAi. Since the unconstrained minimum
point is obviously X∗∗ and X∗∗ � RAi,

arg min
X∈RAi

D(X) = arg min
X∈R2:||X−Ai||2=1

||X − X∗∗||2.(2.2)

Let X′′ be a minimum point of the problem (2.2).

If X∗∗ is outside the circle, from the triangle inequality,

D(X′′,X∗∗) � D(X′′,Ai) −D(Ai,X∗∗) = D(Ai,X∗∗) − 1,

D(X′′,X∗∗) = D(X′′,Ai) −D(Ai,X∗∗) = D(Ai,X∗∗) − 1

if and only if points X∗∗, X′′ and Ai are collinear.
Thus, the minimum of D(X′′,X∗∗) = D(Ai,X∗∗) − 1 is attained when X′′ is the

intersection of the line segment connecting Ai and X∗∗ with the circle.

If X∗∗ is inside the circle,

D(X′′,X∗∗) � D(Ai,X∗∗) −D(X′′,Ai) = 1 −D(Ai,X∗∗).

Thus, the minimum of D(X′′,X∗∗) = 1 − D(Ai,X∗∗) is attained when X′′ is the
intersection of the line segment connecting Ai and X∗∗ with the circle.

For given i ∈ (S< ∪ S>), let us denote a function on R2

GAi(X) =
{

0, X ∈ RAi

||X − CAi(X)||2, X � RAi
.(2.3)

Lemma 2.2. Let us chose two indexes i, j ∈ S< ∪ S> : RAi ∩ RAj � Ø, Ai � Aj and
an arbitrary point X′ � RAi ∩ RAj. The point CAi,Aj(X′) ∈ RAi ∩ RAj closest to the point
X′ coincides with CAi(X′), CAj(X′) or an intersection point of two circles of radius 1 with
centers in Ai and Aj.
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Proof. Since the function fR(X) = ||X−X′|| is convex and X′ � RAi∩RAj, its minimum
in RAi ∩RAj belongs to the borderline of the region RAi ∩RAj which consists of tho
arcs of the circles with centers in Ai and Aj joint in two intersection points of the
circles. Let us denote them Ii, j and I′i, j.

If CAi,Aj(X′) belongs to the circle with center in Ai (||X′ −Ai|| = 1) and CAi,Aj(X′) �
{Ii, j, I′i, j} then, from Lemma 2.1, CAi,Aj(X′) = CAi(X′)}.

Analogously, If CAi,Aj(X′) belongs to the circle with center in Aj then

CAi,Aj(X′) � {Ii, j, I′i, j}

and
CAi,Aj(X′) = CAj(X′).

Let us denote the penalty function on R2

G(X) = max
i∈S<∪S>

GAi(X).(2.4)

Obviously, G(X) � 0∀X ∈ R2 and G(X) = 0∀X ∈ R f .

From convexity of each of functions GAi(·), function G(·) is convex.

Thus, the problem of searching for a point X′ ∈ R f can be restated as problem
of minimizing G(X).

3. Algorithm for the constrained Weber problem

Based on Hypothesis 1, we propose the algorithm below.

Algorithm 3.1. Weiszfeld procedure for problem (1.1) with constraints (1.4) and (1.5).

Require: Coordinates and weights of the demand points Ai = (ai
1, a

i
2),wi, i = 1,N, pre-

specified tolerance ε, constraints (1.4) and (1.5) specified by sets S< and S>.

Step 1: Calculate the initial point X∗ ∈ R f (here, R f is the feasible set bounded by
constraints); Δ = +∞.

Step 2: while Δ > ε do:

Step 2.1: niter = niter + 1; ddenom =
∑N

i=1 wi/||Ai −X∗||2.
Step 2.2: x∗∗r =

∑N
i=1

x∗rwi
||X∗−Ai ||2·ddenom

∀r ∈ {1, 2} ; X∗∗ = (x∗∗1 , x
∗∗
2 ).

Step 2.3: if G(X∗∗) > 0 then X∗∗∗ = C(X∗∗) else X∗∗∗ = X∗∗.

Step 2.4: Δ = ||X∗ − X∗∗∗||; X∗ = X∗∗∗.

Step 2.5: Continue Step 2.

Step 3: STOP, return X∗∗.
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For this algorithm, we must explain two supplementary procedures for search-
ing for an initial point X∗ ∈ R f and for searching for the closest point C(X∗∗) ∈ R f .

We use the initial feasible point closest to the median (see algorithm below).

Algorithm 3.2. Calculate the initial point X∗ ∈ R f (Step 1 of Algorithm 3.1).

Require: Coordinates and weights of the demand points Ai = (ai
1, a

i
2),wi, i = 1,N, con-

straints (1.4) and (1.5) specified by sets S< and S>.

Step 1: xr =
∑N

i=1 wia
i
r∑N

i=1 wi
∀r ∈ {1, 2}. We assume that X = (x1, x2).

Step 2: X∗ = C(X).
Step 3: STOP, return X∗.

Based on Lemma 2.1 and Lemma 2.2, we use the algorithm below for calculating
C(X).

Algorithm 3.3. Calculate C(X) (Step 2 of Algorithm 3.2 and Step 2.3 of Algorithm 3.1).

Require: Coordinates of the demand points Ai = (ai
1, a

i
2), i = 1,N, constraints (1.4) and

(1.5) specified by sets S< and S>, initial point X.
Step 1: Calculate �i = GAi(X)∀i ∈ S< ∪ S>; G =

∑
i∈S<∪S> �i.

Step 2: while G > 0 do:
Step 2.1: Choose two indexes i′ = arg max

i∈S<∪S>
�i; i′′ = arg max

i∈(S<∪S>)\{i′}
�i.

Step 2.2: if �i′′ = 0 then X = CAi′ (X); Calculate �i = GAi(X)∀i ∈ S< ∪S>; G =
∑

i∈S<∪S> �i;
Continue Step 2.

Step 2.3: Calculate coordinates of two intersection points of the circles in Ai′ and Ai′′ :
I1, I2 = Pintersect(Ai′ ,Ai′′ ); Calculate C1 = CAi′ (X); C2 = CAi′′ (X).

Step 2.4: X = arg min
X∈{C1,C2 ,I1 ,I2}

G(X); G = G(X).

Step 2.5: Continue Step 2.
Step 3: STOP, return X.

In Algorithm 3.3, we use formulas (2.3) and (2.4). To obtain CAi(X) (an intersec-
tion point of the line connecting X and Ai and the circle with center in Ai) for given
X′ = (x′1, x

′
2) and Ai = (ai

1, a
i
2), we use equations below (from equations of a line and

circle).

b =
x′1 − ai

1

x′2 − ai
2

,(3.1)

a = ai
1 − bai

2.(3.2)

From the equation
(x1 − ai

1)2 + (x2 − ai
2)2 = 1

of the circle with center in Ai, we have an equation, we have an equation

(1 + b2)x2
2 + (2b(a − ai

1) − 2ai
2)x2 + (ai

2)2 + (a − ai
1)2 − 1 = 0.
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Having solving it, assuming CAi(X′) = (c1, c2), we obtain:

c′2 = −(2b(a − ai
1) − 2ai

2) +D, c′′2 = −(2b(a − ai
1) − 2ai

2) +D,(3.3)

c′1 = ai
1 +

(c′2 − ai
2)(x′1 − ai

2)

x′2 − ai
2

+ ai
1, c′′1 = ai

1 +
(c′′2 − ai

2)(x′1 − ai
2)

x′2 − ai
2

+ ai
1,(3.4)

(c1, c2) = arg min
X∈{(c′1,c′2),(c′′1 ,c

′′
2 )}
||X − X′||(3.5)

where

D =
√

(2b(a − ai
1) − 2ai

2)
2 − 4(1 + b2)(ai

2)
2 + (a − ai

1)2 − 1.(3.6)

For calculating (3.1)-(3.6), we must take into consideration two possible special
cases. When X′ = Ai, distances from X′ to all points on the circle with center in X′
are equal. In this case, we can use any of them as the minimum point. We use the
point

(c1, c2) = (x′1, x
′
2 − 1).

In the case when ai
2 = x′2, we use formulas

c′1 = c′′1 = x′1,

c′2 = x′2 + 1, c′′2 = x′2 − 1

and choose (c1, c2) in accordance with (3.5).

4. Numerical examples

Let us consider problem shown in Fig. 4.1, Case 1. In this problem, the coordi-
nates and weights of the demand points are: A1 = (0, 0.75), w1 = 3, A2 = (0.3, 0.5),
w2 = 2, A3 = (0.6, 0.5), w3 = 3, A4 = (1, 2), w4 = 6. The feasible regionR f is bounded
by four constraints

||X − A1||2 � 1, ||X − A2||@ � 1,

||X − A3||2 � 1, ||X − A4||2 � 1.

I.e., S< = {1, 4}, S> = {2, 3}.
We implement Algorithm 3.1 with ε = 0.00001.

The median point (Step 1 of Algorithm 3.2) is

X∗∗ =

4∑
i=1

Aiwi

4∑
i=1

wi

= (0.6, 1.19642857).
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Fig. 4.1: Example problems and solution process

This median point X∗ is outside R f . To obtain the closest feasible point,
Algorithm 3.3 is implemented. At Step 1 of Algorithm 3.3, �1 = 0, �4 = 0,
�2 = 0.241704046, �3 = 0.30357143, G = 0.545275476 > 0. Thus, Step 2 of Al-
gorithm 3.3 is performed.

At Step 2.1 of Algorithm 3.3, i′ = 3, i′′ = 2. At Step 2.2, �i′′ = �2 � 0.
At Step 2.3 of Algorithm 3.3, the points of intersection of the circles with centers

in A2 and A3 are I1 = (0.45, 1.4886856) and I2 = (0.45,−0.4886856). The points
closest to the circles with centers in A2 and A3 are C1 = CA3 = (0.6, 1.5) and
C2 = CA2 = (0.6956239, 1.41841261).

At Step 2.4 of Algorithm 3.3, G(C1) = 0, G(C2) = 0.07662269, G(Ii) = 0, G(I2) =
1.86662994. Therefore, the new point is X = C1 = (0.6, 1.5). Since G = 0, this
is the returned value of Algorithm 3.3 and Algorithm 3.2. This value is used as
X∗ = (0.6, 1.5) at Step 1 of Algorithm 3.1.

At Steps 2.1 and 2.2 of Algorithm 3.1,

ddenom = 17.4095535,

X∗∗ = (0.67463657, 1.35220493).

This point is outside R f .
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Table 4.1: Some table here.

niter X∗ ddenom X∗∗ Δ
1 (0.6, 1.5) 17.4095535 (0.67463657,

1.35220493)
0.01937229

2 (0.619371390,
1.49981236)

17.5361094 (0.67960047,
1.36051086)

0.01628994

3 (0.63565516,
1.49936415)

17.64033129 (0.68362543,
1.367251455)

0.01360489

4 (0.64924779,
1.49878659)

17.7251354 (0.68687416,
1.37269171)

0.01129761

5 (0.66052837,
1.49816648)

17.79357911 (0.689489,
1.37706744)

0.003214

6 (0.66373616,
1.49796678)

17.81267195 (0.69021857,
1.3782875)

0

At Steps 2.3 and 2.4, after implementing Algorithm 3.3,

X∗∗∗ = (0.61937139, 1.49981236),

Δ = 0.01628994.

The interim results of further iterations are shown in Table 4.1.
The problem has been solved in 6 iterations.
If the initial feasible point of the problem is an intersection point of 2 circles with

centers in the demand points, just one iteration is needed. Let us solve a problem
with same coordinates of the demand points and weights but other feasible region
(see Fig. 4.1, Case 2). In this case, the constraints are

||X − A1||2 � 1, ||X − A2||2 � 1,

||X − A3||2 � 1, ||X − A4||2 � 1,

S< = {1, 2, 4}, S> = {3}
.

We have the same median point (0.6, 1.196428571428) outside the new feasible
region.

This median point X∗ = (0.6, 1.19642857) is outside R f . After Algorithm 3.2, the
initial feasible point isC(X∗) = (0.45000325, 1.4886855). Having performed Steps 2.1
– 2.4, we have

ddenom = 16.45815067, X∗∗ = (0.63128532, 1.2808757),

X∗∗∗ = (0.45000325, 1.4886855). Δ = 0.
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Therefore, in Case 2, the initial and final solutions coincide.
Our algorithm is heuristic (Hypothesis 1 is not proved analytically). To prove

our Hypothesis experimentally, we generated the example problems, solved it with
our algorithm and compared the results with the results of the grid search.

For problem generating, we used the algorithm below.

Algorithm 4.1. Example problems generating.
Require: Number of demand points N.
Step 1: S< = Ø; S> = Ø.

Step 2: For i ∈ {1,N} do:
Step 2.1: x1 = 4 · Random(); x2 = 4 · Random(); X = (x1, x2); If ∃A ∈ {A1, ...,Ai−1} :

||X − A||2 < 0.1 then repeat Step 2.1.
Step 2.2: Ai = (x1, x2); wi = 9 · Random() + 1.
Step 2.3: r = Random(); If r < 0.5 then S< = S< ∪ {i} else S> = S> ∪ {i}.
Step 2.4 Continue Step 2.

Step 2: X = (4 · Random(), 4 · Random()); Implement modified Algorithm 3.3 to calculate
Xr = C(X); If Xr ∈ R f is not obtained (i.e. if the feasible region is empty), remove one
randomly chosen element from S< and repeat Step 2.

Step 3: STOP, return {Ai}, {wi}, S<, S>.

Algorithm 3.3 works under the assumption that the feasible region is not empty.
If it is empty, its Step 2 turns into an endless loop. To avoid this situation, we add
Step 2.3a:

Step 2.3a: If min
X∈{C1,C2,I1,I2}

G(X) � G then STOP, return no result.

Having generated an example problem, we solve it with Algorithm 3.1.
The objective function of Weber problem is Lipschitzian [16]. To obtain the

Lischitzian constant λ, we use the following inequality [12]

λ||X − X′|| � | f (X) − f (X′)| = |
N∑

i=1

wi||Ai − X|| −
N∑

i=1

wi||Ai − X′|| |

�
N∑

i=1

wi| ||Ai − X|| − ||Ai − X′|| |.(4.1)

From the triangle rule,

N∑
i=1

wi| ||Ai − X|| − ||Ai − X′|| | �
N∑

i=1

wi||X′ − X||.

Thus,

λ||X − X′|| �
N∑

i=1

wi||X′ − X||.
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With Lipschitzian constant value

λ =
N∑

i=1

wi,

the inequality (4.1) is true.
From Algorithm 4.1, 1 < wi < 10. Therefore, N < λ < 10 ·N.
For convex objective function, having performed the grid search (also known as

the sampling method, see [8]) on a grid with step s along each coordinate, we can
estimate the minimum of the objective function with tolerance 10 ·N · s. Since the
coordinates of the demand points belong to the interval [0, 4], estimating n values
of each coordinate gives result with tolerance 40 · N/n. We used the following
algorithm.

Algorithm 4.2. Sampling method.
Require: Number of samples of each coordinate n, objective function f , number of

demand points N.
Step 1: f ∗ = +∞; X′∗ = (0, 0).

Step 2: For i ∈ {1,n} do:

Step 2.1: For i ∈ {1,n} do:
Step 2.1.1: x1 = 4 · i/n; x2 = 4 · j/n; X = (x1, x2); f ∗∗ = f (X).
Step 2.1.2: If f ∗∗ < f ∗ then X′∗ = X; f ∗ = f ∗∗.
Step 2.1.3: Continue Step 2.1.

Step 2.2: Continue Step 2.
Step 3: STOP, return minimum value f ∗, minimum point X′∗ and the tolerance εt =

40 ·N/n.

If X∗ is the solution of the problem (1.1) obtained by Algorithm 3.1 and X′∗ is
the solution obtained by Algorithm 4.2 then

| f (X∗) − f (X′∗)| � 40 ·N/n.(4.2)

Having generated 30 problems using Algorithm 4.1 with N = 3, 4, 5, 7, 10, 15, 20
and solved them with both Algorithm 3.1 and Algorithm 4.2 (n = 1000) and proved
the inequality (4.2) for each pair of results, we proved Hypothesis 1 and the con-
vergence of Algorithm 3.1 experimentally.

5. Conclusion

The proposed algorithm which realizes the slightly modified Weiszfeld procedure
is able to solve the single-facility constrained Weber problems with the connected
feasible region bounded by arcs with equal radius. The algorithm can be useful
for problems with maximum and minimum distance limits as a simple alternative
for the Mixed-Integer Nonlinear Programming procedure. However, the compu-
tational complexity of the proposed algorithm is subject to the further research.
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