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COMPACT OPERATORS ON QUATERNIONIC HILBERT SPACES

M. Fashandi

Abstract. In this paper, compact operators on quaternionic Hilbert space are introduced
and some properties of this class of operators are studied.

1. Introduction and Preliminaries

The field of quaternions, which will be denoted by H throughout this paper,
contains all elements of the form q = x0 + x1i + x2 j + x3k, where x0, x1, x2 and x3

are real numbers and i, j, k are the so-called imaginary units with the following
multiplication rules:

i2 = j2 = k2 = −1, i j = − ji = k, jk = −kj = i, and ki = −ik = j.(1.1)

Therefore, we see that multiplication is not commutative in H. The quaternionic
conjugate of q is defined by q = x0 − x1i − x2 j − x3k, and the absolute value of q is
|q| = √

x0
2 + x1

2 + x2
2 + x3

2. It is easy to see that for any two quaternions q1 and q2,
q1q2 = q2 q1. For more information about the properties of the quaternions one
may see [1] and [5].

Throughout this paper H stands for a linear vector space over H under left
scalar multiplication. If there exists a function 〈., .〉 : H × H −→ H, such that for
every f , �, h ∈ H and q ∈H the following properties hold:

(i) 〈 f , �〉 = 〈�, f 〉,
(ii) 〈 f , f 〉 > 0 unless f = 0,
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(iii) 〈 f , � + h〉 = 〈 f , �〉 + 〈 f , h〉,
(iv) 〈q f , �〉 = q〈 f , �〉,

then we call it an inner product. The quaternionic norm of an element f ∈ H is
defined by ‖ f ‖ = √〈 f , f 〉which satisfies all properties of a norm especially Cauchy-
Schwartz inequality (see [5], Proposition 2.2). The parallelogram law is also proved
readily for this norm, i.e. for each f , � ∈ H,

‖ f + �‖2 + ‖ f − �‖2 = 2(‖ f ‖2 + ‖�‖2).(1.2)

Now, the term “left quaternionic Hilbert space” refers to the latter normed space
(H, ‖.‖), whenever it is a separable Hilbert space. Similarly, the notion of a right
quaternionic Hilbert space has been defined (see [5] or [8]). We will focus on left
quaternionic Hilbert spaces although it is easy to express and prove all claims for
the right version.

It is well-known that a complex Hilbert space and its dual are isometrically isomor-
phic, this is a direct result of the Riesz representation theorem. In quaternionic case,
the Riesz representation theorem is also valid (see [10] and [9]). In more details, if
h : H −→H is a functional on a left quaternionic Hilbert space H, i.e. h is left linear,
namely, for p ∈H and x, y ∈ H,

h(px + y) = ph(x)+ h(y),

and bounded, which means ‖h‖ := sup{|h(x)|, ‖x‖ = 1, x ∈ H} is finite, then there
exists a unique vector x′ ∈ H such that ‖ h ‖=‖ x′ ‖ and

h(x) = 〈x, x′〉.(1.3)

We will refer to (1.3) as the Riesz representation theorem.

It is said that T : H −→ H is a left linear operator if for all f , � ∈ H and p ∈H,

T(p f + �) = pT f + T�.

Such an operator is called bounded if there exists K ≥ 0 such that for all f ∈ H,

‖T f ‖ ≤ K‖ f ‖.

As in the complex case, the norm of a bounded left linear operator T is defined by

‖T‖ = sup
{‖T f ‖
‖ f ‖ , 0 � f ∈ H

}
.(1.4)
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The set of all bounded left linear operators on H is denoted by B(H), which is
a complete normed space with the norm defined by (1.4) (see [5]; Proposition
2.11, for more properties of B(H)). For every T ∈ B(H), there exists a unique
operator T∗ ∈ B(H), which is called the adjoint of T, such that, for all f , � ∈ H,
〈T f , �〉 = 〈 f ,T∗�〉. Among many properties of the adjunction, stated and proved in
Theorem 2.15 and Remark 2.16 of [5], we remind of ‖T‖ = ‖T ∗‖. Also, the following
theorem of [4] will be needed later.

Theorem 1. [4] If T ∈ B(VL
H), is a self-adjoint operator, then

‖T‖ = sup{|〈T f , f 〉|; ‖ f ‖ = 1, f ∈ VL
H}.

It is emphasised that, the adjoint operation is not an involution on B(H), as the
equality (qT)∗ = qT∗ holds only for q ∈ R (see [10]). In the next section, we
define compact operators on a left quaternionic Hilbert space and investigate some
properties analogous to the compact operators on complex Hilbert spaces.

2. Compact operators on quaternionic Hilbert spaces

Similar to the complex case, we define a compact operator on a left quaternionic
Hilbert space H, an operator T : H −→ H, for which T(B) is a compact set of H,
where B is a bounded set of H. The set of all compact operators on H will be denoted
by B0(H). Clearly,B0(H) ⊆ B(H).

It is well-known that in metric spaces compactness and sequentially compact-
ness are equivalent, therefore, we have the next lemma.

Lemma 1. T ∈ B0(H) is a compact operator if and only if for each bounded sequence
{xn} ⊆ H, the sequence {Txn} has a convergent subsequence.

Lemma 1 will be used repeatedly in the proof of Theorem 2. The following lemma
is also needed to prove the same theorem and is the quaternionic version of Arzela-
Ascoli theorem, whose proof is exactly the same as its complex version (see, Theo-
rem 7.25 of [7]).

Lemma 2. For a compact metric space (K, d), let { fn} be a pointwise bounded and equicon-
tinuous sequence of quaternionic valued functions on K, then

(i) { fn} is uniformly bounded on K,

(ii) { fn} contains a uniformly convergent subsequence.
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In Lemma 2, an equicontinuous sequence of quaternionic valued functions { fn} on
a metric space (X, d) satisfies the following condition

∀ε > 0,∃δ > 0,∀x, y ∈ X,∀n
(
d(x, y) < δ =⇒ | fn(x) − fn(y)| < ε) .(2.1)

By |.|, in (2.1) we mean the absolute value in quaternionic sense.

Theorem 2. B0(H) is a cloesd biideal of B(H) and is cloesd under adjunction.

Proof. For an arbitrary q ∈ H and T ∈ B0(H), the left scalar multiplication qT
is defined by (qT)( f ) = qT( f ) and it is easily seen that qT ∈ B0(H). Lemma 1 helps
us to prove readily that B0(H) is closed under summation and composition from
both left and right by a bounded left linear operator. Again, using Lemma 1 and
following the proof of Theorem 8.1-5 of [6], closedness of B0(H) under the norm
topology of B(H) is proved. Therefore, B0(H) is a closed biideal of B(H). To show
that B0(H) is closed under adjunction, take T ∈ B0(H) and a bounded subset of H,
say B. Put M = sup{‖y‖, y ∈ B}, which is finite, and for a sequence {yn} of B, define
θyn : T(B) −→ H by θyn(x) = 〈x, yn〉. For each n and x, z ∈ T(B), we see that

|θyn(x) − θyn (z)| = |〈x − z, yn〉| ≤M‖x − z‖(2.2)

and |θyn(x)| ≤ M′M, where M′ = sup{‖x‖, x ∈ T(B)}. Hence, {θyn} is a uniformly
bounded equicontinuous sequence of functionals in C(T(B)). Applying Lemma
2, we obtain a subsequence {θynk

} which uniformly converges to a functional f ∈
C(T(B)). Using the Riesz representation theorem, f = θy for some y ∈ H and
‖θy‖ = ‖y‖. Now, for each x ∈ B,

θynk
(Tx) = 〈Tx, ynk〉 = 〈x,T∗ynk〉 = θT∗ynk

(x).

So {θT∗ynk
} is also a uniformly convergent sequence on B and ‖θT∗ynk

‖ = ‖T∗ynk‖
implies that {T∗ynk } is a convergent sequence, too. Finally, Lemma 1, guarantees
the compactness of the adjoint operator T∗ on H.

In a complex Hilbert space, the linear operator T − λI is the main tool for
dealing with the spectral theory of bounded linear operator T. Although, for a left
quaternionic Hilbert space H, if T ∈ B(H) and q ∈ H, then T − qI is not even a left
linear operator. In order to study in this direction, Colombo [2] and then, Ghiloni
et al. [5] have provided a replacement for the operator T − qI and generalized
equivalently the notions of spectrum and resolvent set of a left linear operator (see
Section 4.7 of [2] and Section 4 of [5]). We follow the work by Ghiloni et al. [5] to
study quaternionic version of some spectral properties of compact operators. First,
we recall the next definition from [5].
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Definition 1. [5] Let H be a left quaternionic Hilbert space and T be a left linear operator
on H. For q ∈H, the associated operator Δq(T) is defined by:

Δq(T) = T2 − (q + q)T + |q|2I.

The spherical resolvent set of T is the set ρS(T) ⊂H consisting all quaternions q satisfying
all the following conditions:

(a) ker(Δq(T)) = {0}.
(b) Ran(Δq(T)) is dense in H.

(c) Δq(T)−1 : Ran(Δq(T))→ D(T2) is bounded.

The complement of ρS(T) in H is defined to be the spherical spectrum σS(T) of T.
Ghiloni et al. [5] have introduced a partition for σS(T) as follows:

(i) The spherical point spectrum of T:

σpS = {q ∈H; ker(Δq(T)) � {0}}.

(ii) The spherical residual spectrum of T:

σrS(T) = {q ∈H; ker(Δq(T)) = {0},Ran(Δq(T)) � H}.

(iii) The spherical continuous spectrum of T:

σcS(T) = {q ∈H; ker(Δq(T)) = {0},Ran(Δq(T)) = H,Δq(T)−1 � H}.

The spherical spectral radious of T, denoted by rS(T), is defined by

rS(T) = sup{|q| ∈ R+; q ∈ σS(T)}.

The eigenvector of T with eigenvalue q is an element u ∈ H − {0}, for which Tu = uq.

The following proposition summerizes some properties of Δq(T) that can be
proved easily.

Proposition 1. Let T ∈ B(H), then

(i) Δq(T) ∈ B(H).

(ii) (Δq(T))∗ = Δq(T∗), and if T is self adjoint then so is Δq(T).
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(iii) If T is a normal operator, i.e. TT∗ = T∗T, then Δq(T) is normal, and

kerΔq(T) = kerΔq(T∗).

Now, we prove the quaternionic version of Proposition 4.13 of [3], which is stated
in the next theorem.

Theorem 3. If T ∈ B0(H) and 0 � q ∈ σpS(T), then ker(Δq(T)) is finite dimensional.

Proof. According to Proposition 2.6 of [5], every quaternionic Hilbert space
admits an orthonormal Hilbert basis. Let ker(Δq(T)), as a subspace of H, contain
an infinite orthonormal sequence {en}. Compactness of T and Lemma 1 imply the
existence of a subsequence {enk } for which {Tenk } is convergent. Hence, {Tenk } is a
Cauchy sequence and by Theorem 2, we conclude {T2enk } and {(q + q)T(enk)} are
also Cauchy sequences. But for nj � nk,

‖T2(enk ) − (q + q)T(enk ) − T2(enj ) + (q + q)T(enj)‖2 = ‖|q|2(enj − enk )‖2
= 2|q|4 > 0.

The last equality obtained from orthonormality of {en} and the parallelogram law
(1.2). This contradiction shows that ker(Δq(T)) must be finite dimensional.

Theorem 4. If T ∈ B0(H) and inf{‖Δq(T)h‖; ‖h‖ = 1} = 0, for a non-zero q ∈ H, then
q ∈ σpS(T).

Proof. To obtain the result, we follow the analogous procedure as in the proof of
Proposition 4.14 of [3]. By the assumption, there is a sequence of unit members of H,
say {hn}, such that ‖Δq(T)hn‖ → 0. Since T is a compact operator, by Lemma 1, there
is a subsequence {hnk} and a vector f ∈ H such that ‖Thnk − f ‖ → 0. Boundedness of
T implies that ‖T2hnk − T f ‖ → 0 and ‖(q + q)Thnk − (q + q) f ‖ → 0. But,

hnk = |q|−2(T2hnk − (q + q)Thnk − Δq(T)hnk)→ |q|−2(T f − (q + q) f ),

so ‖T f − (q+q) f ‖ = |q|2 and hence, f � 0. Also, Thnk → |q|−2(T2 f − (q+q)T f ). Since,
Thnk → f , we must have |q|−2(T2 f − (q + q)T f ) = f or T2 f − (q + q)T f − |q|2 f = 0,
that is 0 � f ∈ kerΔq(T), so q ∈ σpS(T).

Corollary 1. Let T ∈ B0(H), 0 � q � σpS(T), and q � σpS(T∗). Then Δq(T)−1 is bounded
and RanΔq(T) = H.

Proof. Since q � σpS(T), Theorem 4 implies that there is a constant c > 0 such
that ‖Δq(T)h‖ � c‖h‖, for all h ∈ H. If f ∈ RanΔq(T), then there is a sequence {hn} in
H such that Δq(T)hn → f . Thus,

‖hn − hm‖ � c−1‖Δq(T)hn − Δq(T)hm‖,
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and so {hn} is a Cauchy sequence and converges to some h ∈ H. Uniqueness of
limit leads to Δq(T)h = f . This means that RanΔq(T) is closed in H. Now, using
Proposition 2.14 of [5] and the fact that Δq(T)∗ = Δq(T∗), we obtain

RanΔq(T) =
(
kerΔq(T)∗

)⊥
= H.

For f ∈ H, let A f be the unique vector h ∈ H for which Δq(T)h = f . Thus,
Δq(T)A f = f for all f ∈ H, and so c‖A f ‖ � ‖Δq(T)A f ‖ = ‖ f ‖. This shows that A
is bounded. Also, Δq(T)AΔq(T)h = Δq(T)h, hence Δq(T)(AΔq(T)h − h) = 0, since
q � σpS(T), we must have AΔq(T)h = h, that is A = Δq(T)−1.

As a consequence of Corollary 1 and Definition 1, we have the next result.

Corollary 2. If T ∈ B0(H) and 0 � q � σpS(T), then q ∈ ρS(T).

It is well-known that, the norm of a compact self-adjoint operator on a complex
Hilbert space, is an eigenvalue of that operator (see Lemma 5.9 of [3]). In quater-
nionic case, we expect the validity of this claim.

Conjecture 1. For a non zero self-adjoint opeator T ∈ B0(H), either±‖T‖ is an eigenvalue
of T.

Remark 1. By the assumptions of Conjecture 1 and Theorem 1, a sequence {hn} of
unit vectors of H exists such that |〈Thn, hn〉| → ‖T‖. Let |q| = ‖T‖, then we can find
(if necessary) a subsequence of {hn}, shown it again by {hn}, such that 〈Thn, hn〉 → q.
Note that since T is self-adjoint, 〈Thn, hn〉 and so q are real numbers (see Theorem
3 of [4]). Since T is self-adjoint, so is T3. If we have the extra assumption of
〈T3hn, hn〉 → q3, then taking limit from the following inequality

0 � ‖Δq(T)hn‖2 = ‖T2hn‖2 + 6q2‖Thn‖2 + q4 − 4q〈T3hn, hn〉 − 4q3〈Thn, hn〉
� 8q4 − 4q〈T3hn, hn〉 − 4q3〈Thn, hn〉,

we obtain ‖Δq(T)hn‖ → 0. Now, Theorem 4 results q ∈ σpS(T) and by Proposition
4.5 of [5], we conclude that q is an eigenvalue of T.
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