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FURTHER RESULTS ON A UNIQUE RANGE SET OF MEROMORPHIC
FUNCTIONS WITH DEFICIENT POLES

Arindam Sarkar and Paulomi Chattopadhyay

Abstract. We prove the uniqueness theorem of meromorphic functions sharing one set
which improves the results of Yi, Li-Yang, Fang - Hua, Lahiri and Banerjee - Majumder.

1. Introduction, definitions and results

Let f and � be two non-constant meromorphic functions defined in the open com-
plex plane C. If for some a ∈ C∪ {∞}, f and � have the same set of a-points with the
same multiplicities, we say that f and � share the value a CM (Counting Multiplic-
ities)and if we do not consider the multiplicities, then f and � are said to share the
value a IM (Ignoring Multiplicities). We do not explain the standard notations and
definitions of the value distribution theory as these are available in [6]. Let S be a
set of distinct elements ofC∪{∞} and Ef (S) =

⋃
a∈S{z : f (z)−a = 0}, where each zero

is counted according to its multiplicity. If we do not count the multiplicity then we
replace the above set by E f (S). If E f (S) = E�(S) we say that f and � share the set
S CM. On the other hand if Ef (S) = E�(S), we say that f and � share the set S IM.
It will be convenient to denote by E any subset of positive reals of finite measure
not necessarily the same at each occurrence. For any non-constant meromorphic
function h, we denote by S(r, h) any quantity such that S(r, h) = o(T(r, h)) as r→ ∞,
r � E. We put T(r) = max{T(r, f ),T(r, �)} and S(r) = o(T(r)) as r→∞, r � E.

In 1976 Gross [4] showed that there exist three finite sets S1, S2, S3 such that any
two entire functions f , � satisfying Ef (Sj) ≡ E�(Sj) for j = 1, 2, 3 must be identical.
In the same paper Gross asked the following question: Can one find two (or even
one) finite sets S1 and S2 such that any two entire functions f and � satisfying
Ef (Sj) ≡ E�(Sj) for j = 1, 2 must be identical?
A set S for which two meromorphic functions f and � satisfying Ef (S) ≡ E�(S)
become identical is called a unique range set of meromorphic functions.

In 1982, Gross and Yang [5] proved the following theorem.
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Theorem A. Let S = {z : ez + z = 0}. If two entire functions f and � satisfy
Ef (S) = E�(S) then f ≡ �.

Since the set S = {z : ez + z = 0} contains infinitely many elements, the above
result does not answer the question of Gross.

In 1994 Yi[16] exhibited a finite set S containing 15 elements which is a unique
range set of entire functions and provided an affirmative answer to the question of
Gross .

In 1995 Yi[17] and Li and Yang [14] independently proved the following result
which gives a better answer to the question of Gross .

Theorem B. Let S = {z : z7 − z6 − 1 = 0}. If two entire functions f and � satisfy
Ef (S) = E�(S) then f ≡ �.

Extending Theorem B to meromorphic functions,recently Fang and Hua[2]
proved the following Theorem .

Theorem C. Let S = {z : z7 − z6 − 1 = 0}. If two meromorphic functions f and �
are such that Θ(∞; f ) > 11

12 , Θ(∞; �) > 11
12 and Ef (S) = E�(S) then f ≡ �.

In 2001 Lahiri introduced the notion of weighted sharing in the following way.
Definition 1.1.[8, 9] Let k be a nonnegative integer or infinity. For a ∈ C ∪ {∞}

we denote by Ek(a; f ) the set of all a-points of f where an a-point of multiplicity m
is counted m times if m ≤ k and k+ 1times if m > k. If Ek(a; f ) = Ek(a; �), we say that
f and � share the value a with weight k.
The definition implies that if f , � share a value a with weight k, then z0 is a zero
of f − a with multiplicity m(≤ k) if and only if it is a zero of � − a with multiplicity
m(≤ k) and z0 is a zero of f − a of multiplicity m(> k) if and only if it is a zero of �− a
with multiplicity n(> k) where m is not necessarily equal to n .
We write f , � share (a, k) to mean f , � share the value a with weight k. Clearly if f , �
share (a, k) then f , � share (a, p) for all integers p , 0 ≤ p < k. Also we note that f , �
share a value a IM or CM if and only if f , � share (a, 0) or (a,∞) respectively.

Definition 1.2.[2] Let S be a set of distinct elements ofC∪{∞} and k be a positive
integer or∞. We denote by Ef (S, k) the set

⋃
a∈S Ek(a; f ).

Definition 1.3. For a ∈ C∪{∞} and a positive integer m we denote by N(r, a; f |≥
m) the counting function of those a-points of fwhose multiplicities are not less than
m where each a-point is counted according to its multiplicity. We agree to write
N(r, a; f |≥ m) to denote the corresponding reduced counting function.

Definition 1.4. We put N2(r, a; f ) = N(r, a; f ) +N(r, a; f |≥ 2) and
δ2(a; f ) = 1 − limsupr→∞

N2(r,a; f )
T(r, f ) .

Improving Theorem C Lahiri proved the following theorem.
Theorem D.[10] Let S = {z : z7 − z6 − 1 = 0}. If two meromorphic functions f

and � are such that Θ(∞; f ) + Θ(∞; �) > 3
2 and Ef (S, 2) = E�(S, 2) then f ≡ �.

In 2004 Lahiri-Banerjee [11] further improved Theorem D in the following man-
ner.

Theorem E.[11] Let S = {z : zn + azn−1 + b = 0} where n ≥ 9 is an integer and
a, b be two non-zero constants such that zn + azn−1 + b = 0 has no multiple root.
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If for two non-constant meromorphic functions f and �, Ef (S, 2) = E�(S, 2) and
Θ(∞; f ) + Θ(∞; �) > 4

n−1 then f ≡ �.
Example was also cited in [11] to show that the conditionΘ(∞; f )+Θ(∞; �) > 4

n−1
is sharp in Theorem E.

Recently Banerjee and Majumder improved Theorem E by reducing the cardi-
nality of the shared set S from 9 to 6 as well as by weakening the condition on
ramification index which is stated as follows.

Theorem F. [1] Let S = {z : zn + azn−1 + b = 0} where n ≥ 6 is an integer and a, b
be two non-zero constants such that zn + azn−1 + b = 0 has no multiple root. Let f
and � be two non-constant meromorphic functions satisfying Ef (S,m) = E�(S,m). If
(i) m ≥ 2 and Θ f + Θ� > max{ 10−n

2 , 4
n−1 }

(ii)or if m = 1 and Θ f + Θ� > max{ 11−n
2 , 4

n−1 }
(iii)or if m = 0, Θ f + Θ� > max{ 16−n

3 , 4
n−1 }

then f ≡ �where Θ f = Θ(0; f ) + Θ(∞; f ) and Θ� can be defined similarly.

It, therefore, remains an open problem that whether the degree n, of the equation
defining the set S can further be reduced. In this paper we show that it is possible to
reduce the degree to 4 . Note that when n = 4 or 5 , max{ 10−n

2 , 4
n−1 } , max{ 11−n

2 , 4
n−1 }

and max{ 16−n
3 , 4

n−1 } are respectively 10−n
2 , 11−n

2 and 16−n
3 . As a particular case we

state our first theorem when n = 4 or 5 as follows under weaker conditions than
Theorem F.

Theorem 1.1. Let S be defined as Theorem F where n = 4 or 5 and a, b be two
non-zero constants such that zn + azn−1 + b = 0 has no multiple root. Let f and � be
two non-constant meromorphic functions satisfying Ef (S,m) = E�(S,m). If
(i) m ≥ 2 and

(1.1) Θ f + Θ� +
1
2

min{
∑

x�S∪{0,∞}
δ2(x; f ),

∑
x�S∪{0,∞}

δ2(x; �)} > 10 − n
2

(ii) or if m = 1 and

(1.2) Θ f + Θ� +
1
2

min{
∑

x�S∪{0,∞}
δ2(x; f ),

∑
x�S∪{0,∞}

δ2(x; �)} > 11 − n
2

(iii) or if m = 0 and

(1.3) Θ f + Θ� +
1
2

min{
∑

x�S∪{0,∞}
δ2(x; f ),

∑
x�S∪{0,∞}

δ2(x; �)} > 16 − n
3

then f ≡ �where Θ f = Θ(0; f ) + Θ(∞; f ) and Θ� can be defined similarly.

In our next Theorem we improve Theorem F by showing that the conclusion
of Theorem F can be obtained for all n ≥ 5 by dropping the term 4

n−1 , in the right
hand side of the inequalities in (i), (ii) and (iii) at the cost of assuming that f and �
should have no common zero.
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Theorem 1.2. Let S = {z : zn + azn−1 + b = 0} where n ≥ 5 is an integer and a, b
be two non-zero constants such that zn + azn−1 + b = 0 has no multiple root. Let f
and � be two non-constant meromorphic functions having no common zero and
satisfying Ef (S,m) = E�(S,m). Then any one of the conditions (1.1), (1.2) and (1.3)
of (i), (ii) and (iii) of Theorem 1.1, implies that f ≡ �.

Following corollaries are immediate consequences of the above theorem.

Corollary 1.1. Let S = {z : zn + azn−1 + b = 0} where n ≥ 11 is an integer and a,
b be two non-zero constants such that zn + azn−1 + b = 0 has no multiple root. Let
f and � be two non-constant meromorphic functions having no common zero and
satisfying Ef (S, 2) = E�(S, 2) then f ≡ �.

Corollary 1.2. Let S = {z : zn + azn−1 + b = 0} where n ≥ 12 is an integer and a, b
be two non-zero constants such that zn + azn−1 + b = 0 has no multiple root. Let f
and � be two non-constant meromorphic functions having no common zero and
satisfying Ef (S, 1) = E�(S, 1), then f ≡ �.

Corollary 1.3. Let S = {z : zn + azn−1 + b = 0} where n ≥ 17 is an integer and a, b
be two non-zero constants such that zn + azn−1 + b = 0 has no multiple root. Let f
and � be two non-constant meromorphic functions having no common zero and
satisfying Ef (S, 0) = E�(S, 0), then f ≡ �.

Note 1.1. In Theorem 1.2 and in the Corollaries above we have assumed the
following:
{z : f (z) = 0} ∩ {z : �(z) = 0} = Φ.
And we have shown ultimately that f ≡ �. Therefore above condition then reduces
to {z : f (z) = 0} ∩ {z : f (z) = 0} = Φ, implying that 0 is a Picard Exceptional value of
f .

Definition 1.5.[9] Let f and � be two nonconstant meromorphic functions such
that f and � share (a, 0) for a ∈ C∪ {∞}. Let z0 be an a-point of f with multiplicity p,
and an a-point of � of multiplicity q. We denote by NL(r, a; f )(NL(r, a; �)) the reduced
counting function of those a-points of fand � where p > q(q > p). We denote by
N∗(r, a; f , �)the reduced counting function of those a-points of f whose multiplicities
differ from the corresponding a-points of �. Clearly N∗(r, a; f , �) = N∗(r, a; �, f ) and
N∗(r, a; f , �) = NL(r, a; f ) + NL(r, a; �). We also denote by N1)

E (r, 1; f ) the counting
function of those 1-points of f and �where p = q = 1.

2. Lemmas

In this section we present some lemmas which will be required to establish our
results. Let f and � be two nonconstant meromorphic functions and

(2.1) F =
f n−1( f + a)
−b

,G =
�n−1(� + a)
−b

.

In the lemmas several times we use the function H defined by H = F′′
F′ − 2F′

F−1−G′′
G′ +

2G′
G−1 .
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Lemma 2.1.[13] Let f be a non-constant meromorphic function and let R( f ) =∑n
k=0 ak f k∑m
j=0 bj f j be an irreducible rational function in f with constant coefficients {ak} and

{bj} where an�0,bm � 0. Then T(r,R( f )) = dT(r, f ) + S(r, f ), where d = max{m, n}.
Lemma 2.2.[19] If F,G be two nonconstant meromorphic functions such that

they share (1, 0) and H � 0 then

N1)
E (r, 1; F |= 1) = N1)

E (r, 1; G |= 1) ≤ N(r,H) + S(r, F) + S(r,G).

Lemma 2.3. [1] Let f and � be two non-constant meromorphic functions such
that Ef (S, 0) = E�(S, 0),where S is as defined in Theorem 1.1.Also suppose that F,G
be given by (4)and H � 0, then

N(r,H) ≤ N(r, 0; f ) +N(r, 0; �) +N(r,∞; f ) +N(r,∞; �) +N(r, 0; n f + a(n − 1))

+N(r, 0; n� + a(n − 1)) +N∗(r, 1; F,G)+N0(r, 0; f ′) +N0(r, 0; �′),

where N0(r, 0; f ′) denotes the reduced counting function corresponding to the zeros
of f ′ which are not the zeros of f and F − 1. N0(r, 0; �′) is defined similarly.

Lemma 2.4. [12] If N(r, 0; f (k) | f � 0) denotes the counting function of those
zeros of f (k)which are not the zeros of f ,where a zero of f (k) is counted according
to its multiplicity then N(r, 0; f (k) | f � 0) ≤ kN(r,∞; f )+N(r, 0; f |< k) + kN(r, 0; f |≥
k) + S(r, f ) where N(r, 0; f |< k) is the counting function of the zeros of f with
multiplicity < k each zero being counted according to its multiplicity.

Lemma 2.5. If Θ f and Θ� are defined as in Theorem 1.1 and

(2.2) Θ f + Θ� +
1
2

min{
∑

x�S∪{0,∞}
δ2(x; f ),

∑
x�S∪{0,∞}

δ2(x; �)} > 3

holds, then f n−1( f + a)�n−1(� + a) � b2 when n = 4.
Proof : Assume to the contrary that

(2.3) f n−1( f + a)�n−1(� + a) ≡ b2.

Suppose that f has no pole. Then from (2.3)we see that � has neither zero nor
−a-points. Hence Θ(∞; f ) = 1,Θ(−a; �) = 1,Θ(0; �) = 1 and Θ(∞; �) = 0 and hence
we obtain

min{
∑

x�S∪{0,∞}
δ2(x; f ),

∑
x�S∪{0,∞}

δ2(x; �)} = 0.

Then (2.2) gives Θ(0; f ) > 1, which is not possible. Thus f must have poles.
Similarly we can show that �must have poles .
We see that if z0 is a zero of f + a of multiplicity p then z0 is a pole of � with
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multiplicity q such that p = nq . Therefore p ≥ n and hence Θ(0; f + a) ≥ 1 − 1
n .

Similarly we may obtain Θ(0; � + a) ≥ 1 − 1
n . If possible suppose that

min{
∑

x�S∪{0,∞}
δ2(x; f ),

∑
x�S∪{0,∞}

δ2(x; �)} = 2.

Then Θ f + Θ� = 0 and then condition (2.2) is not satisfied . If

min{
∑

x�S∪{0,∞}
δ2(x; f ),

∑
x�S∪{0,∞}

δ2(x; �)} = 1,

then the maximum value Θ f may assume is 1. Similar is true for Θ� also and we
observe that (2.2) is not satisfied in this case too.

So let min{∑x�S∪{0,∞} δ2(x; f ),
∑

x�S∪{0,∞} δ2(x; �)} = 1 + s, 1 > s > 0. Then each
of Θ f and Θ� may have maximum value as 1 − s and in this case (2.2) implies
1 − s + 1 − s + 1

2 (1 + s) > 3 which implies − 1
2 >

3s
2 , which is not possible.

So we must have

min{
∑

x�S∪{0,∞}
δ2(x; f ),

∑
x�S∪{0,∞}

δ2(x; �)} < 1.

Therefore we put, min{∑x�S∪{0,∞} δ2(x; f ),
∑

x�S∪{0,∞} δ2(x; �)} = 1−s, s > 0. Thus from
(2.2) we observe that

Θ f + Θ� > 3 − 1 − s
2
=

5
2
+

s
2
.

Since Θ(0; f + a) ≥ 1 − 1
n and Θ(0; � + a) ≥ 1 − 1

n , by the deficiency relation we get
for n = 4,

Θ(0; f ) + Θ(0; f + a) + Θ(∞; f ) + Θ(0; �) + Θ(0; �+ a) + Θ(∞; �) ≤ 4

⇒ Θ f + Θ� + Θ(0; f + a) + Θ(0; � + a) ≤ 4
⇒ 5

2 +
s
2 + 1 − 1

4 + 1 − 1
4 ≤ 4 ⇒ s < 0 , which is a contradiction. This proves the

lemma.
Lemma 2.6.[11] Let f , � be two non-constant meromorphic functions and a, b be

two nonzero constants , then f n−1( f + a)�n−1(� + a) � b2 where n ≥ 5 is an integer.
Lemma 2.7.[1] Let f , � be two non-constant meromorphic functions such that

Θ(0; f ) + Θ(∞; f ) + Θ(0; �) + Θ(∞; �) > 4
n−1 . Then f n−1( f + a) ≡ �n−1(� + a) implies

f ≡ � where n(≥ 3) is an integer and a is a nonzero constant.
Lemma 2.8. Let f , � be two non-constant meromorphic functions having no

common zero. Then f n−1( f + a) ≡ �n−1(� + a) implies f ≡ � where n(≥ 5) is an
integer and a is a nonzero constant.

Proof. Suppose

(2.4) f n−1( f + a) ≡ �n−1(� + a)
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and f � �. We consider the two cases .
CaseI. Let y = �

f be a constant. Then from (2.4) it follows that y � 1,yn � 1 and

yn−1 � 1 and f ≡ −a 1−yn−1

1−yn is a constant, which is not possible .

CaseII. Let y = �f be a nonconstant. Then from (2.4), it follows that

(2.5) f ≡ −a
1 − yn−1

1 − yn ≡ a
(

yn−1

1 + y + y2 + ... + yn−1 − 1
)
.

Let z0 be a zero of f + a of multiplicity p. Then it follows from (2.4) that z0 is either
a zero of � or a zero of � + a. If z0 is a zero of � + a , then y(z0) = 1 and hence from
(2.5) it follows that

f (z0) = a
( 1
1 + n − 1

− 1
)
= a

(1
n
− 1

)
� −a.

Hence z0 must be a zero of � of multiplicity q , say. Hence p = (n − 1)q and hence
p ≥ n − 1. It follows that

Θ(0; f + a) ≥ 1 − 1
n − 1

=
n − 2
n − 1

.

Similarly we can show that Θ(0; � + a) ≥ n−2
n−1 .

Above analysis also implies that {z : f (z) + a = 0} ⊆ {z : �(z) = 0} and similarly
{z : �(z) + a = 0} ⊆ {z : f (z) = 0}. Since the zeros of � are either the zeros of f + a or
the zeros of f and since f and � have no common zero it follows from above that
{z : f (z)+a = 0} ≡ {z : �(z) = 0}. Similarly {z : �(z)+a = 0} ≡ {z : f (z) = 0}. Since from
(2.4), it follows by Lemma 2.1, T(r, f ) = T(r, �) +O(1) , we have Θ(0; �+ a) = Θ(0; f )
and Θ(0; f + a) = Θ(0; �) . Thus

Θ(0; f ) + Θ(0; �) ≥ 2(
n − 2
n − 1

) ≥ 6
n − 1

,

for n ≥ 5. Hence by Lemma 2.7 it follows that f ≡ �. This leads to a contradiction
that y is nonconstant.

Hence we must have f ≡ �.

3. Proofs of Theorems
Proof of Theorem 1.1. Let wj, j = 1, 2, ..., n be the distinct elements of S. From (2.1) we
see that since Ef (S,m) = E f (S,m), F, G share (1,m).
Case 1. Assume first H � 0.
Subcase 1.1. m ≥ 1.When m ≥ 2, using Lemma 2.4, we obtain

N0(r, 0; �′) +N(r, 1; G |≥ 2) +N∗(r, 1; F,G)

≤ N0(r, 0; �′) +N(r, 1; G |≥ 2) +N(r, 1; G |≥ 3)

≤ N0(r, 0; �′) +
n∑

j=1

{N(r,wj; � |= 2) + 2N(r,wj; � |≥ 3)}

≤ N(r, 0; �′ | � � 0) + S(r, �) ≤ N(r, 0; �)+N(r,∞; �) + S(r, �).(3.1)
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Let x1, x2, ..., xk be any k distinct complex numbers such that xi � S ∪ {0,∞}.
Let us denote by N∗0(r, 0; f ′) the counting function of the zeros of f ′, which are not
the zeros of f

∏k
i=1( f − xi) and F − 1. By N

∗
0(r, 0; f ′) we denote the corresponding

reduced counting function. Therefore
N0(r, 0; f ′) = N

∗
0(r, 0; f ′) +

∑k
i=1 N(r, xi; f |≥ 2).

Thus by Lemmas 2.1 , 2.2 and 2.3 and (3.1) we obtain for ε > 0,

(n + k)T(r, f ) ≤ N(r, 0; f ) +N(r,∞; f ) +N(r, 1; F |= 1) +N(r, 1; F |≥ 2)

+

k∑
i=1

N(r, xi; f ) −N∗0(r, 0; f ′) + S(r, f )

≤ 2{N(r, 0; f ) +N(r,∞; f )} +N(r,∞; �) +N(r, 0; �) +N(r, 0; n f + a(n − 1))

+N(r, 0; n� + a(n − 1)) + {N(r,∞; �)+N(r, 0; �)}+
k∑

i=1

N2(r, xi; f ) + S(r)

≤ 2{N(r, 0; f ) +N(r,∞; f ) +N(r, 0; �)+N(r,∞; �)} + T(r, f ) + T(r, �) +
k∑

i=1

N2(r, xi; f ) + S(r)

≤ {10 + k − 2Θ(0; f ) − 2Θ(∞; f ) − 2Θ(0; �)− 2Θ(∞; �)

−
k∑

i=1

δ2(xi; f ) + ε}T(r) + S(r).(3.2)

Similarly we may obtain

(n + k)T(r, �)
≤ {10 + k − 2Θ(0; f ) − 2Θ(∞; f ) − 2Θ(0; �)− 2Θ(∞; �)

−
k∑

i=1

δ2(xi; �) + ε}T(r) + S(r).(3.3)

Thus from (3.2)and (3.3) we obtain,
nT(r)

≤
(
10 − 2Θ(0; f ) − 2Θ(∞; f ) − 2Θ(0; �)− 2Θ(∞; �)−min

{
k∑

i=1
δ2(xi; �),

k∑
i=1
δ2(xi; f )

}
+ ε

)
T(r)+

S(r).
This being true for any k numbers of complex numbers x1, x2, ..., xk not belonging
to S ∪ {0,∞}we have from above

nT(r) ≤ {10 − 2Θ(0; f ) − 2Θ(∞; f ) − 2Θ(0; �)− 2Θ(∞; �)

−min{
∑

x�S∪{0,∞}
δ2(x; �),

∑
x�S∪{0,∞}

δ2(x; f )} + ε}T(r) + S(r).

This contradicts (1.1).
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We omit the proof of the subcases for m = 1 and m = 0 since these proofs can
be carried out using the techniques of our above proof of the subcase 1.1 and the
proof of Theorem C[1] for subcases for m = 1 and m = 0.

Case2. H ≡ 0 . Hence

(3.4) F ≡ AG + B
CG +D

,

where AD−BC � 0. Hence T(r, F) = T(r,G)+O(1) and therefore from the definitions
of F and G and Lemma 2.1 , we have

(3.5) T(r, f ) = T(r, �) +O(1)

Subcase 2.1. AC � 0. Suppose that D � 0. Then from ( 3.4) we obtain by using
Lemma 2.1 and the second main theorem,
T(r,G) ≤ N(r, 0; G) +N(r,∞; G) +N(r, −D

C ; G) + S(r,G),
that is

(3.6) nT(r, �) ≤ N(r, 0; �) +N(r, 0; � + a) +N(r,∞; �)+N(r,∞; f ) + S(r, �).

This leads to a contradiction if n ≥ 5. So let n = 4. Then from (3.6) we obtain,

Θ(0; �) + Θ(∞; �)+ Θ(0; � + a) + Θ(∞; f ) = 0.

Then

Θ� = Θ(0; �)+ Θ(∞; �) = 0

and

Θ f = Θ(0; f ) + Θ(∞; f ) = Θ(0; f ).

Hence from above we obtain from (1.1), with n = 4,

Θ(0; f ) +
1
2

min{
∑

δ2(x; f ),
∑

δ2(x; �)} > 10 − 4
2
= 3,

which is not possible.
Similarly we may verify that (1.2) and (1.3) also lead to contradiction for n = 4.
If D = 0 then F ≡ α + β

G , where α = A
C , β = B

C . Since F, G share 1-points we have
α + β = 1. Hence

(3.7) F ≡ 1 − β + β

G
.

If β � 1 ,we obtain from (3.7), using Lemma 2.1 and the second main theorem,
nT(r, �) ≤ N(r, 0; G) +N(r,∞; G) +N(r, β

β−1 ; G) + S(r,G)

≤ N(r,∞; f ) + N(r,∞; �) +N(r, 0; f ) + N(r, 0; f + a) + S(r, �) and arguing as in
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the case with (3.6) we may also arrive at a contradiction from the above inequality.
If β = 1, FG ≡ 1 which is impossible by Lemmas 2.5 and 2.6.
Subcase 2.2. A = 0, C � 0. Then from (3.4) we have F = η

G+γ , where η = B
C . Since

F,G share 1-points , η = 1 + γ. Thus

(3.8) F =
1 + γ
G + γ

We see that γ � 0, for γ = 0⇒ FG ≡ 1, which is not allowed by Lemmas 2.5 and 2.6.
By the second main theorem we obtain, from above
nT(r, �) ≤ N(r, 0; G) +N(r,−γ; G) +N(r,∞; G) + S(r,G)

≤ N(r, 0; �) + N(r, 0; � + a) + N(r,∞; �) + N(r,∞; f ) + S(r, �), this is previously
obtained inequality (3.6) and therefore we arrive at a contradiction as in the Subcase
2.1
Subcase 2.3 A � 0, C = 0. Hence from (3.4) , we note that F ≡ ηG + γ, where
η = A

D , γ =
B
D . Since F,G share 1-points, γ + η = 1.

Hence

(3.9) F ≡ ηG + 1 − η.
From (3.9) we observe that T(r, f ) = T(r, �) +O(1). Suppose η � 1. Then from (3.9)
we obtain by the second main theorem

nT(r, �) ≤ N(r, 0; G) +N(r,∞; G) +N(r,
η − 1
η

; G) + S(r,G)

≤ N(r, 0; �) +N(r, 0; � + a) +N(r,∞; �) +N(r, 0; f ) +N(r, 0; f + a) + S(r, �)
≤ {5 −Θ(0; �)−Θ(0; � + a) −Θ(∞; �) −Θ(0; f ) −Θ(0; f + a) + ε}T(r, �),

where, ε > 0 is arbitrary. This leads to a contradiction if

n > 5 −Θ(0; �)−Θ(0; � + a) −Θ(∞; �) −Θ(0; f ) −Θ(0; f + a).

So let

n ≤ 5 −Θ(0; �)−Θ(0; � + a) −Θ(∞; �) −Θ(0; f ) −Θ(0; f + a),

that is

Θ(0; �)+ Θ(0; � + a) + Θ(∞; �) + Θ(0; f ) + Θ(0; f + a) ≤ 5 − n.

Hence

Θ f + Θ� = 5 − n − ξ + Θ(∞; f ),

for some ξ ≥ 0 . Thus from (1.1) we obtain

5 − n − ξ + Θ(∞; f ) +
1
2

min{
∑

x�S∪{0,∞}
δ2(x; f ),

∑
x�S∪{0,∞}

δ2(x; �)} > 10 − n
2

,
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which implies that

Θ(∞; f ) +
1
2

min{
∑

x�S∪{0,∞}
δ2(x; f ),

∑
x�S∪{0,∞}

δ2(x; �)} > n + 2ξ
2

,

which leads to contradiction for n ≥ 4. Similarly we may arrive at contradiction
from (1.2) and (1.3). Hence η = 1. Therefore F ≡ G . Now from (1.1), we have

Θ f + Θ� >
10 − n

2
− 1

2
min{

∑
x�S∪{0,∞}

δ2(x; f ),
∑

x�S∪{0,∞}
δ2(x; �)}

≥ 10 − n
2
− 1 >

4
n − 1

,

for n = 4, 5.
Similarly we can verify that the inequalities (1.2) and (1.3) also imply
Θ f + Θ� >

4
n−1 , for n = 4, 5 . Thus our theorem follows from Lemma 2.7.

We omit the proof of Theorem 1.2 as it can be carried out exactly as in the above
proof except in the Subcase 2.3 when we obtain F ≡ G we should apply Lemma 2.8
to obtain our desired result instead of Lemma 2.7 as in the previous case.
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