FURTHER RESULTS ON A UNIQUE RANGE SET OF MEROMORPHIC FUNCTIONS WITH DEFICIENT POLES

Arindam Sarkar and Paulomi Chattopadhyay

Abstract. We prove the uniqueness theorem of meromorphic functions sharing one set which improves the results of Yi, Li-Yang, Fang - Hua, Lahiri and Banerjee - Majumder.

1. Introduction, definitions and results

Let *f* and *g* be two non-constant meromorphic functions defined in the open complex plane \mathbb{C} . If for some $a \in \mathbb{C} \cup \{\infty\}$, *f* and *g* have the same set of *a*-points with the same multiplicities, we say that *f* and *g* share the value *a* CM (Counting Multiplicities) and if we do not consider the multiplicities, then *f* and *g* are said to share the value *a* IM (Ignoring Multiplicities). We do not explain the standard notations and definitions of the value distribution theory as these are available in [6]. Let *S* be a set of distinct elements of $\mathbb{C} \cup \{\infty\}$ and $E_f(S) = \bigcup_{a \in S} \{z : f(z) - a = 0\}$, where each zero is counted according to its multiplicity. If we do not count the multiplicity then we replace the above set by $\overline{E}_f(S)$. If $E_f(S) = E_g(S)$ we say that *f* and *g* share the set *S* CM. On the other hand if $\overline{E}_f(S) = \overline{E}_g(S)$, we say that *f* and *g* share the set *S* IM. It will be convenient to denote by *E* any subset of positive reals of finite measure not necessarily the same at each occurrence. For any non-constant meromorphic function *h*, we denote by S(r, h) any quantity such that S(r, h) = o(T(r, h)) as $r \to \infty$, $r \notin E$. We put $T(r) = \max\{T(r, f), T(r, q)\}$ and S(r) = o(T(r)) as $r \to \infty$, $r \notin E$.

In 1976 Gross [4] showed that there exist three finite sets S_1 , S_2 , S_3 such that any two entire functions f, g satisfying $E_f(S_j) \equiv E_g(S_j)$ for j = 1, 2, 3 must be identical. In the same paper Gross asked the following question: Can one find two (or even one) finite sets S_1 and S_2 such that any two entire functions f and g satisfying $E_f(S_j) \equiv E_g(S_j)$ for j = 1, 2 must be identical?

A set *S* for which two meromorphic functions *f* and *g* satisfying $E_f(S) \equiv E_g(S)$ become identical is called a unique range set of meromorphic functions.

In 1982, Gross and Yang [5] proved the following theorem.

Received May 30, 2013.; Accepted July 31, 2013.

²⁰¹⁰ Mathematics Subject Classification. Primary 30D35

Theorem A. Let $S = \{z : e^z + z = 0\}$. If two entire functions f and g satisfy $E_f(S) = E_g(S)$ then $f \equiv g$.

Since the set $S = \{z : e^z + z = 0\}$ contains infinitely many elements, the above result does not answer the question of Gross.

In 1994 Yi[16] exhibited a finite set S containing 15 elements which is a unique range set of entire functions and provided an affirmative answer to the question of Gross .

In 1995 Yi[17] and Li and Yang [14] independently proved the following result which gives a better answer to the question of Gross .

Theorem B. Let $S = \{z : z^7 - z^6 - 1 = 0\}$. If two entire functions *f* and *g* satisfy $E_f(S) = E_g(S)$ then $f \equiv g$.

Extending Theorem B to meromorphic functions, recently Fang and Hua[2] proved the following Theorem .

Theorem C. Let $S = \{z : z^7 - z^6 - 1 = 0\}$. If two meromorphic functions f and g are such that $\Theta(\infty; f) > \frac{11}{12}$, $\Theta(\infty; g) > \frac{11}{12}$ and $E_f(S) = E_g(S)$ then $f \equiv g$.

In 2001 Lahiri introduced the notion of weighted sharing in the following way.

Definition 1.1.[8, 9] Let *k* be a nonnegative integer or infinity. For $a \in \mathbb{C} \cup \{\infty\}$ we denote by $E_k(a; f)$ the set of all *a*-points of *f* where an *a*-point of multiplicity *m* is counted *m* times if $m \le k$ and k + 1 times if m > k. If $E_k(a; f) = E_k(a; g)$, we say that *f* and *g* share the value *a* with weight *k*.

The definition implies that if *f*, *g* share a value *a* with weight *k*, then z_0 is a zero of f - a with multiplicity $m(\le k)$ if and only if it is a zero of g - a with multiplicity $m(\le k)$ and z_0 is a zero of f - a of multiplicity m(> k) if and only if it is a zero of g - a with multiplicity n(> k) where *m* is not necessarily equal to *n*.

We write f, g share (a, k) to mean f, g share the value a with weight k. Clearly if f, g share (a, k) then f, g share (a, p) for all integers p, $0 \le p < k$. Also we note that f, g share a value a IM or CM if and only if f, g share (a, 0) or (a, ∞) respectively.

Definition 1.2.[2] Let *S* be a set of distinct elements of $\mathbb{C} \cup \{\infty\}$ and *k* be a positive integer or ∞ . We denote by $E_f(S, k)$ the set $\bigcup_{a \in S} E_k(a; f)$.

Definition 1.3. For $a \in \mathbb{C} \cup \{\infty\}$ and a positive integer *m* we denote by $N(r, a; f | \ge m)$ the counting function of those *a*-points of *f* whose multiplicities are not less than *m* where each *a*-point is counted according to its multiplicity. We agree to write $\overline{N}(r, a; f | \ge m)$ to denote the corresponding reduced counting function.

Definition 1.4. We put $N_2(r, a; f) = \overline{N}(r, a; f) + \overline{N}(r, a; f \ge 2)$ and $\delta_2(a; f) = 1 - limsup_{r \to \infty} \frac{N_2(r, a; f)}{T(r, f)}$.

Improving Theorem C Lahiri proved the following theorem.

Theorem D.[10] Let $S = \{z : z^7 - z^6 - 1 = 0\}$. If two meromorphic functions f and g are such that $\Theta(\infty; f) + \Theta(\infty; g) > \frac{3}{2}$ and $E_f(S, 2) = E_g(S, 2)$ then $f \equiv g$.

In 2004 Lahiri-Banerjee [11] further improved Theorem D in the following manner.

Theorem E.[11] Let $S = \{z : z^n + az^{n-1} + b = 0\}$ where $n \ge 9$ is an integer and a, b be two non-zero constants such that $z^n + az^{n-1} + b = 0$ has no multiple root.

If for two non-constant meromorphic functions *f* and *g*, $E_f(S, 2) = E_g(S, 2)$ and $\Theta(\infty; f) + \Theta(\infty; g) > \frac{4}{n-1}$ then $f \equiv g$.

Example was also cited in [11] to show that the condition $\Theta(\infty; f) + \Theta(\infty; g) > \frac{4}{n-1}$ is sharp in Theorem E.

Recently Banerjee and Majumder improved Theorem E by reducing the cardinality of the shared set *S* from 9 to 6 as well as by weakening the condition on ramification index which is stated as follows.

Theorem F. [1] Let $S = \{z : z^n + az^{n-1} + b = 0\}$ where $n \ge 6$ is an integer and a, b be two non-zero constants such that $z^n + az^{n-1} + b = 0$ has no multiple root. Let f and g be two non-constant meromorphic functions satisfying $E_f(S, m) = E_g(S, m)$. If (i) $m \ge 2$ and $\Theta_f + \Theta_g > \max\{\frac{10-n}{2}, \frac{4}{n-1}\}$ (ii) or if m = 1 and $\Theta_f + \Theta_g > \max\{\frac{11-n}{2}, \frac{4}{n-1}\}$ (iii) or if m = 0, $\Theta_f + \Theta_g > \max\{\frac{16-n}{3}, \frac{4}{n-1}\}$ then $f \equiv g$ where $\Theta_f = \Theta(0; f) + \Theta(\infty; f)$ and Θ_g can be defined similarly.

It, therefore, remains an open problem that whether the degree *n*, of the equation defining the set *S* can further be reduced. In this paper we show that it is possible to reduce the degree to 4. Note that when n = 4 or 5, $\max\{\frac{10-n}{2}, \frac{4}{n-1}\}$, $\max\{\frac{11-n}{2}, \frac{4}{n-1}\}$ and $\max\{\frac{16-n}{3}, \frac{4}{n-1}\}$ are respectively $\frac{10-n}{2}, \frac{11-n}{2}$ and $\frac{16-n}{3}$. As a particular case we state our first theorem when n = 4 or 5 as follows under weaker conditions than Theorem F.

Theorem 1.1. Let *S* be defined as Theorem F where n = 4 or 5 and *a*, *b* be two non-zero constants such that $z^n + az^{n-1} + b = 0$ has no multiple root. Let *f* and *g* be two non-constant meromorphic functions satisfying $E_f(S, m) = E_g(S, m)$. If (*i*) $m \ge 2$ and

(1.1)
$$\Theta_{f} + \Theta_{g} + \frac{1}{2} \min\{\sum_{x \notin S \cup \{0,\infty\}} \delta_{2}(x; f), \sum_{x \notin S \cup \{0,\infty\}} \delta_{2}(x; g)\} > \frac{10 - n}{2}$$

(ii) or if m = 1 and

(1.2)
$$\Theta_f + \Theta_g + \frac{1}{2} \min\{\sum_{x \notin S \cup \{0,\infty\}} \delta_2(x; f), \sum_{x \notin S \cup \{0,\infty\}} \delta_2(x; g)\} > \frac{11 - n}{2}$$

(iii) or if m = 0 and

(1.3)
$$\Theta_f + \Theta_g + \frac{1}{2} \min\{\sum_{x \notin S \cup \{0,\infty\}} \delta_2(x; f), \sum_{x \notin S \cup \{0,\infty\}} \delta_2(x; g)\} > \frac{16-n}{3}$$

then $f \equiv g$ where $\Theta_f = \Theta(0; f) + \Theta(\infty; f)$ and Θ_g can be defined similarly.

In our next Theorem we improve Theorem F by showing that the conclusion of Theorem F can be obtained for all $n \ge 5$ by dropping the term $\frac{4}{n-1}$, in the right hand side of the inequalities in (i), (ii) and (iii) at the cost of assuming that *f* and *g* should have no common zero.

Theorem 1.2. Let $S = \{z : z^n + az^{n-1} + b = 0\}$ where $n \ge 5$ is an integer and a, b be two non-zero constants such that $z^n + az^{n-1} + b = 0$ has no multiple root. Let f and g be two non-constant meromorphic functions having no common zero and satisfying $E_f(S, m) = E_g(S, m)$. Then any one of the conditions (1.1), (1.2) and (1.3) of (i), (ii) and (iii) of Theorem 1.1, implies that $f \equiv q$.

Following corollaries are immediate consequences of the above theorem.

Corollary 1.1. Let $S = \{z : z^n + az^{n-1} + b = 0\}$ where $n \ge 11$ is an integer and a, b be two non-zero constants such that $z^n + az^{n-1} + b = 0$ has no multiple root. Let f and g be two non-constant meromorphic functions having no common zero and satisfying $E_f(S, 2) = E_g(S, 2)$ then $f \equiv g$.

Corollary 1.2. Let $S = \{z : z^n + az^{n-1} + b = 0\}$ where $n \ge 12$ is an integer and a, b be two non-zero constants such that $z^n + az^{n-1} + b = 0$ has no multiple root. Let f and g be two non-constant meromorphic functions having no common zero and satisfying $E_f(S, 1) = E_g(S, 1)$, then $f \equiv g$.

Corollary 1.3. Let $S = \{z : z^n + az^{n-1} + b = 0\}$ where $n \ge 17$ is an integer and a, b be two non-zero constants such that $z^n + az^{n-1} + b = 0$ has no multiple root. Let f and g be two non-constant meromorphic functions having no common zero and satisfying $E_f(S, 0) = E_g(S, 0)$, then $f \equiv g$.

Note 1.1. In Theorem 1.2 and in the Corollaries above we have assumed the following:

 $\{z: f(z) = 0\} \cap \{z: g(z) = 0\} = \Phi.$

And we have shown ultimately that $f \equiv g$. Therefore above condition then reduces to $\{z : f(z) = 0\} \cap \{z : f(z) = 0\} = \Phi$, implying that 0 is a Picard Exceptional value of *f*.

Definition 1.5.[9] Let *f* and *g* be two nonconstant meromorphic functions such that *f* and *g* share (*a*, 0) for $a \in \mathbb{C} \cup \{\infty\}$. Let z_0 be an *a*-point of *f* with multiplicity *p*, and an *a*-point of *g* of multiplicity *q*. We denote by $\overline{N}_L(r, a; f)(\overline{N}_L(r, a; g))$ the reduced counting function of those *a*-points of *f* and *g* where p > q(q > p). We denote by $\overline{N}_*(r, a; f, g)$ the reduced counting function of those *a*-points of *f* whose multiplicities differ from the corresponding *a*-points of *g*. Clearly $\overline{N}_*(r, a; f, g) = \overline{N}_*(r, a; g, f)$ and $\overline{N}_*(r, a; f, g) = \overline{N}_L(r, a; f) + \overline{N}_L(r, a; g)$. We also denote by $N_E^{(1)}(r, 1; f)$ the counting function of those 1-points of *f* and *g* where p = q = 1.

2. Lemmas

In this section we present some lemmas which will be required to establish our results. Let f and g be two nonconstant meromorphic functions and

(2.1)
$$F = \frac{f^{n-1}(f+a)}{-b}, G = \frac{g^{n-1}(g+a)}{-b}.$$

In the lemmas several times we use the function *H* defined by $H = \frac{F'}{F} - \frac{2F}{F-1} - \frac{G''}{G'} + \frac{2G'}{G-1}$.

Lemma 2.1.[13] Let *f* be a non-constant meromorphic function and let $R(f) = \frac{\sum_{k=0}^{n} a_k f^k}{\sum_{j=0}^{m} b_j f^j}$ be an irreducible rational function in *f* with constant coefficients $\{a_k\}$ and $\{b_j\}$ where $a_{n\neq 0}, b_m \neq 0$. Then T(r, R(f)) = dT(r, f) + S(r, f), where $d = max\{m, n\}$.

Lemma 2.2.[19] If *F*, *G* be two nonconstant meromorphic functions such that they share (1, 0) and $H \neq 0$ then

$$N_{F}^{(1)}(r, 1; F \mid = 1) = N_{F}^{(1)}(r, 1; G \mid = 1) \le N(r, H) + S(r, F) + S(r, G).$$

Lemma 2.3. [1] Let *f* and *g* be two non-constant meromorphic functions such that $E_f(S, 0) = E_g(S, 0)$, where *S* is as defined in Theorem 1.1. Also suppose that *F*, *G* be given by (4) and $H \neq 0$, then

$$\begin{split} N(r,H) &\leq \overline{N}(r,0;f) + \overline{N}(r,0;g) + \overline{N}(r,\infty;f) + \overline{N}(r,\infty;g) + \overline{N}(r,0;nf+a(n-1)) \\ &+ \overline{N}(r,0;ng+a(n-1)) + \overline{N}_*(r,1;F,G) + \overline{N}_0(r,0;f') + \overline{N}_0(r,0;g'), \end{split}$$

where $\overline{N}_0(r, 0; f')$ denotes the reduced counting function corresponding to the zeros of f' which are not the zeros of f and F - 1. $\overline{N}_0(r, 0; q')$ is defined similarly.

Lemma 2.4. [12] If $N(r, 0; f^{(k)} | f \neq 0)$ denotes the counting function of those zeros of $f^{(k)}$ which are not the zeros of f, where a zero of $f^{(k)}$ is counted according to its multiplicity then $N(r, 0; f^{(k)} | f \neq 0) \le k\overline{N}(r, \infty; f) + N(r, 0; f | < k) + k\overline{N}(r, 0; f | \ge k) + S(r, f)$ where N(r, 0; f | < k) is the counting function of the zeros of f with multiplicity < k each zero being counted according to its multiplicity.

Lemma 2.5. If Θ_f and Θ_q are defined as in Theorem 1.1 and

(2.2)
$$\Theta_f + \Theta_g + \frac{1}{2} \min\{\sum_{x \notin S \cup \{0,\infty\}} \delta_2(x; f), \sum_{x \notin S \cup \{0,\infty\}} \delta_2(x; g)\} > 3$$

holds, then $f^{n-1}(f + a)g^{n-1}(g + a) \neq b^2$ when n = 4.

Proof: Assume to the contrary that

(2.3)
$$f^{n-1}(f+a)q^{n-1}(q+a) \equiv b^2.$$

Suppose that *f* has no pole. Then from (2.3)we see that *g* has neither zero nor -a-points. Hence $\Theta(\infty; f) = 1, \Theta(-a; g) = 1, \Theta(0; g) = 1$ and $\Theta(\infty; g) = 0$ and hence we obtain

$$\min\{\sum_{\mathbf{x}\notin S\cup\{0,\infty\}}\delta_2(\mathbf{x};\,f),\sum_{\mathbf{x}\notin S\cup\{0,\infty\}}\delta_2(\mathbf{x};g)\}=\mathbf{0}.$$

Then (2.2) gives $\Theta(0; f) > 1$, which is not possible. Thus *f* must have poles. Similarly we can show that *g* must have poles .

We see that if z_0 is a zero of f + a of multiplicity p then z_0 is a pole of g with

multiplicity *q* such that p = nq. Therefore $p \ge n$ and hence $\Theta(0; f + a) \ge 1 - \frac{1}{n}$. Similarly we may obtain $\Theta(0; g + a) \ge 1 - \frac{1}{n}$. If possible suppose that

$$\min\{\sum_{x\notin S\cup\{0,\infty\}}\delta_2(x; f), \sum_{x\notin S\cup\{0,\infty\}}\delta_2(x; g)\}=2.$$

Then $\Theta_f + \Theta_q = 0$ and then condition (2.2) is not satisfied. If

$$\min\{\sum_{x\notin S\cup\{0,\infty\}}\delta_2(x; f), \sum_{x\notin S\cup\{0,\infty\}}\delta_2(x; g)\}=1,$$

then the maximum value Θ_f may assume is 1. Similar is true for Θ_g also and we observe that (2.2) is not satisfied in this case too.

So let $\min\{\sum_{x\notin S\cup\{0,\infty\}} \delta_2(x; f), \sum_{x\notin S\cup\{0,\infty\}} \delta_2(x; g)\} = 1 + s, 1 > s > 0$. Then each of Θ_f and Θ_g may have maximum value as 1 - s and in this case (2.2) implies $1 - s + 1 - s + \frac{1}{2}(1 + s) > 3$ which implies $-\frac{1}{2} > \frac{3s}{2}$, which is not possible.

So we must have

$$\min\{\sum_{x\notin S\cup\{0,\infty\}}\delta_2(x;f),\sum_{x\notin S\cup\{0,\infty\}}\delta_2(x;g)\}<1.$$

Therefore we put, $\min\{\sum_{x \notin S \cup \{0,\infty\}} \delta_2(x; f), \sum_{x \notin S \cup \{0,\infty\}} \delta_2(x; g)\} = 1-s, s > 0$. Thus from (2.2) we observe that

$$\Theta_f + \Theta_g > 3 - \frac{1-s}{2} = \frac{5}{2} + \frac{s}{2}.$$

Since $\Theta(0; f + a) \ge 1 - \frac{1}{n}$ and $\Theta(0; g + a) \ge 1 - \frac{1}{n}$, by the deficiency relation we get for n = 4,

$$\Theta(0; f) + \Theta(0; f + a) + \Theta(\infty; f) + \Theta(0; g) + \Theta(0; g + a) + \Theta(\infty; g) \le 4$$

 $\Rightarrow \Theta_f + \Theta_g + \Theta(0; f + a) + \Theta(0; g + a) \leq 4$ $\Rightarrow \frac{5}{2} + \frac{s}{2} + 1 - \frac{1}{4} + 1 - \frac{1}{4} \leq 4 \Rightarrow s < 0$, which is a contradiction. This proves the lemma.

Lemma 2.6.[11] Let f, g be two non-constant meromorphic functions and a, b be two nonzero constants , then $f^{n-1}(f + a)g^{n-1}(g + a) \neq b^2$ where $n \ge 5$ is an integer.

Lemma 2.7.[1] Let f, g be two non-constant meromorphic functions such that $\Theta(0; f) + \Theta(\infty; f) + \Theta(0; g) + \Theta(\infty; g) > \frac{4}{n-1}$. Then $f^{n-1}(f + a) \equiv g^{n-1}(g + a)$ implies $f \equiv g$ where $n(\geq 3)$ is an integer and a is a nonzero constant.

Lemma 2.8. Let f, g be two non-constant meromorphic functions having no common zero. Then $f^{n-1}(f + a) \equiv g^{n-1}(g + a)$ implies $f \equiv g$ where $n \geq 5$ is an integer and a is a nonzero constant.

Proof. Suppose

(2.4)
$$f^{n-1}(f+a) \equiv g^{n-1}(g+a)$$

and $f \neq q$. We consider the two cases .

CaseI. Let $y = \frac{g}{f}$ be a constant. Then from (2.4) it follows that $y \neq 1, y^n \neq 1$ and $y^{n-1} \neq 1$ and $f \equiv -a\frac{1-y^{n-1}}{1-y^n}$ is a constant, which is not possible . **CaseII.** Let $y = \frac{g}{f}$ be a nonconstant. Then from (2.4), it follows that

(2.5)
$$f \equiv -a \frac{1 - y^{n-1}}{1 - y^n} \equiv a \left(\frac{y^{n-1}}{1 + y + y^2 + \dots + y^{n-1}} - 1 \right).$$

Let z_0 be a zero of f + a of multiplicity p. Then it follows from (2.4) that z_0 is either a zero of g or a zero of g + a. If z_0 is a zero of g + a, then $y(z_0) = 1$ and hence from (2.5) it follows that

$$f(z_0) = a\left(\frac{1}{1+n-1}-1\right) = a\left(\frac{1}{n}-1\right) \neq -a.$$

Hence z_0 must be a zero of g of multiplicity q, say. Hence p = (n - 1)q and hence $p \ge n - 1$. It follows that

$$\Theta(0; f+a) \ge 1 - \frac{1}{n-1} = \frac{n-2}{n-1}.$$

Similarly we can show that $\Theta(0; g + a) \ge \frac{n-2}{n-1}$.

Above analysis also implies that $\{z : f(z) + a = 0\} \subseteq \{z : g(z) = 0\}$ and similarly $\{z : g(z) + a = 0\} \subseteq \{z : f(z) = 0\}$. Since the zeros of *g* are either the zeros of *f* + *a* or the zeros of *f* and since *f* and *g* have no common zero it follows from above that $\{z : f(z) + a = 0\} \equiv \{z : g(z) = 0\}$. Similarly $\{z : g(z) + a = 0\} \equiv \{z : f(z) = 0\}$. Since from (2.4), it follows by Lemma 2.1, T(r, f) = T(r, g) + O(1), we have $\Theta(0; g + a) = \Theta(0; f)$ and $\Theta(0; f + a) = \Theta(0; g)$. Thus

$$\Theta(0; f) + \Theta(0; g) \ge 2(\frac{n-2}{n-1}) \ge \frac{6}{n-1},$$

for $n \ge 5$. Hence by Lemma 2.7 it follows that $f \equiv g$. This leads to a contradiction that *y* is nonconstant.

Hence we must have $f \equiv q$.

3. Proofs of Theorems

Proof of Theorem 1.1. Let w_j , j = 1, 2, ..., n be the distinct elements of *S*. From (2.1) we see that since $E_f(S, m) = E_f(S, m)$, *F*, *G* share (1, *m*).

Case 1. Assume first $H \neq 0$.

Subcase 1.1. $m \ge 1$. When $m \ge 2$, using Lemma 2.4, we obtain

$$\overline{N}_0(r, 0; g') + \overline{N}(r, 1; G \geq 2) + \overline{N}_*(r, 1; F, G)$$

$$\leq \overline{N}_0(r, 0; g') + \overline{N}(r, 1; G \geq 2) + \overline{N}(r, 1; G \geq 3)$$

$$\leq \overline{N}_0(r, 0; g') + \sum_{j=1}^n \{\overline{N}(r, w_j; g \mid = 2) + 2\overline{N}(r, w_j; g \mid \geq 3)\}$$

$$(3.1) \qquad \leq N(r, 0; g' \mid g \neq 0) + S(r, g) \leq \overline{N}(r, 0; g) + \overline{N}(r, \infty; g) + S(r, g).$$

Let $x_1, x_2, ..., x_k$ be any k distinct complex numbers such that $x_i \notin S \cup \{0, \infty\}$. Let us denote by $N_0^*(r, 0; f')$ the counting function of the zeros of f', which are not the zeros of $f \prod_{i=1}^{k} (f - x_i)$ and F - 1. By $\overline{N}_0^*(r, 0; f')$ we denote the corresponding reduced counting function. Therefore $\overline{N}_0(r, 0; f') = \overline{N}_0^*(r, 0; f') + \sum_{i=1}^{k} \overline{N}(r, x_i; f \ge 2)$. Thus by *Lemmas 2.1*, *2.2* and *2.3* and (3.1) we obtain for $\epsilon > 0$,

$$(n+k)T(r, f) \leq \overline{N}(r, 0; f) + \overline{N}(r, \infty; f) + \overline{N}(r, 1; F |= 1) + \overline{N}(r, 1; F |\ge 2) \\ + \sum_{i=1}^{k} \overline{N}(r, x_i; f) - N_0^*(r, 0; f') + S(r, f) \\ \leq 2\{\overline{N}(r, 0; f) + \overline{N}(r, \infty; f)\} + \overline{N}(r, \infty; g) + \overline{N}(r, 0; g) + \overline{N}(r, 0; nf + a(n-1)) \\ + \overline{N}(r, 0; ng + a(n-1)) + \{\overline{N}(r, \infty; g) + \overline{N}(r, 0; g)\} + \sum_{i=1}^{k} N_2(r, x_i; f) + S(r) \\ \leq 2\{\overline{N}(r, 0; f) + \overline{N}(r, \infty; f) + \overline{N}(r, 0; g) + \overline{N}(r, \infty; g)\} + T(r, f) + T(r, g) + \sum_{i=1}^{k} N_2(r, x_i; f) + S(r) \\ \leq \{10 + k - 2\Theta(0; f) - 2\Theta(\infty; f) - 2\Theta(0; g) - 2\Theta(\infty; g) \\ (3.2) \qquad - \sum_{i=1}^{k} \delta_2(x_i; f) + \epsilon\}T(r) + S(r).$$

Similarly we may obtain

(3.3)

$$(n+k)T(r,g)$$

$$\leq \{10+k-2\Theta(0;f)-2\Theta(\infty;f)-2\Theta(0;g)-2\Theta(\infty;g)$$

$$-\sum_{i=1}^{k}\delta_{2}(x_{i};g)+\epsilon\}T(r)+S(r).$$

Thus from (3.2) and (3.3) we obtain,

$$nT(r) \le \left(10 - 2\Theta(0; f) - 2\Theta(\infty; f) - 2\Theta(0; g) - 2\Theta(\infty; g) - \min\left\{\sum_{i=1}^{k} \delta_2(x_i; g), \sum_{i=1}^{k} \delta_2(x_i; f)\right\} + \epsilon\right)T(r) + S(r).$$

This being true for any k numbers of complex numbers $x_1, x_2, ..., x_k$ not belonging to $S \cup \{0, \infty\}$ we have from above

$$nT(r) \leq \{10 - 2\Theta(0; f) - 2\Theta(\infty; f) - 2\Theta(0; g) - 2\Theta(\infty; g) - min\{\sum_{x \notin S \cup \{0,\infty\}} \delta_2(x; g), \sum_{x \notin S \cup \{0,\infty\}} \delta_2(x; f)\} + \epsilon\}T(r) + S(r).$$

This contradicts (1.1).

We omit the proof of the subcases for m = 1 and m = 0 since these proofs can be carried out using the techniques of our above proof of the subcase 1.1 and the proof of Theorem C[1] for subcases for m = 1 and m = 0.

Case2. $H \equiv 0$. Hence

(3.4)
$$F \equiv \frac{AG+B}{CG+D'}$$

where $AD - BC \neq 0$. Hence T(r, F) = T(r, G) + O(1) and therefore from the definitions of *F* and *G* and *Lemma 2.1*, we have

(3.5)
$$T(r, f) = T(r, g) + O(1)$$

Subcase 2.1. $AC \neq 0$. Suppose that $D \neq 0$. Then from (3.4) we obtain by using *Lemma 2.1* and the second main theorem, $T(r, G) \leq \overline{N}(r, 0; G) + \overline{N}(r, \infty; G) + \overline{N}(r, \frac{-D}{C}; G) + S(r, G)$, that is

$$(3.6) nT(r,g) \le \overline{N}(r,0;g) + \overline{N}(r,0;g+a) + \overline{N}(r,\infty;g) + \overline{N}(r,\infty;f) + S(r,g).$$

This leads to a contradiction if $n \ge 5$. So let n = 4. Then from (3.6) we obtain,

$$\Theta(\mathbf{0};g) + \Theta(\infty;g) + \Theta(\mathbf{0};g+a) + \Theta(\infty;f) = \mathbf{0}.$$

Then

$$\Theta_q = \Theta(0; q) + \Theta(\infty; q) = 0$$

and

$$\Theta_f = \Theta(0; f) + \Theta(\infty; f) = \Theta(0; f).$$

Hence from above we obtain from (1.1), with n = 4,

$$\Theta(0; f) + \frac{1}{2}\min\{\sum \delta_2(x; f), \sum \delta_2(x; g)\} > \frac{10-4}{2} = 3,$$

which is not possible.

Similarly we may verify that (1.2) and (1.3) also lead to contradiction for n = 4. If D = 0 then $F \equiv \alpha + \frac{\beta}{G}$, where $\alpha = \frac{A}{C}$, $\beta = \frac{B}{C}$. Since *F*, *G* share 1-points we have $\alpha + \beta = 1$. Hence

$$F \equiv 1 - \beta + \frac{\beta}{G}.$$

If $\beta \neq 1$, we obtain from (3.7), using *Lemma 2.1* and the second main theorem, $nT(r, g) \leq \overline{N}(r, 0; G) + \overline{N}(r, \infty; G) + \overline{N}(r, \frac{\beta}{\beta-1}; G) + S(r, G)$

 $\leq \overline{N}(r,\infty; f) + \overline{N}(r,\infty; g) + \overline{N}(r,0; f) + \overline{N}(r,0; f+a) + S(r,g)$ and arguing as in

the case with (3.6) we may also arrive at a contradiction from the above inequality. If $\beta = 1$, $FG \equiv 1$ which is impossible by *Lemmas 2.5* and *2.6*. **Subcase 2.2.** A = 0, $C \neq 0$. Then from (3.4) we have $F = \frac{\eta}{G+\gamma}$, where $\eta = \frac{B}{C}$. Since

Subcase 2.2. $A = 0, C \neq 0$. Then from (3.4) we have $F = \frac{\eta}{G+\gamma}$, where $\eta = \frac{B}{C}$. Since *F*, *G* share 1-points , $\eta = 1 + \gamma$. Thus

$$F = \frac{1+\gamma}{G+\gamma}$$

We see that $\gamma \neq 0$, for $\gamma = 0 \Rightarrow FG \equiv 1$, which is not allowed by *Lemmas 2.5* and *2.6*. By the second main theorem we obtain, from above

 $nT(r,g) \leq \overline{N}(r,0;G) + \overline{N}(r,-\gamma;G) + \overline{N}(r,\infty;G) + \underline{S}(r,G)$

 $\leq \overline{N}(r, 0; g) + \overline{N}(r, 0; g + a) + \overline{N}(r, \infty; g) + \overline{N}(r, \infty; f) + S(r, g)$, this is previously obtained inequality (3.6) and therefore we arrive at a contradiction as in the Subcase 2.1

Subcase 2.3 $A \neq 0$, C = 0. Hence from (3.4), we note that $F \equiv \eta G + \gamma$, where $\eta = \frac{A}{D}, \gamma = \frac{B}{D}$. Since *F*, *G* share 1-points, $\gamma + \eta = 1$. Hence

$$F \equiv \eta G + 1 - \eta.$$

From (3.9) we observe that T(r, f) = T(r, g) + O(1). Suppose $\eta \neq 1$. Then from (3.9) we obtain by the second main theorem

$$nT(r,g) \leq \overline{N}(r,0;G) + \overline{N}(r,\infty;G) + \overline{N}(r,\frac{\eta-1}{\eta};G) + S(r,G)$$
$$\leq \overline{N}(r,0;g) + \overline{N}(r,0;g+a) + \overline{N}(r,\infty;g) + \overline{N}(r,0;f) + \overline{N}(r,0;f+a) + S(r,g)$$
$$\leq \{5 - \Theta(0;g) - \Theta(0;g+a) - \Theta(\infty;g) - \Theta(0;f) - \Theta(0;f+a) + \epsilon\}T(r,g),$$

where, $\epsilon > 0$ is arbitrary. This leads to a contradiction if

$$n > 5 - \Theta(0; g) - \Theta(0; g + a) - \Theta(\infty; g) - \Theta(0; f) - \Theta(0; f + a).$$

So let

$$n \le 5 - \Theta(0; g) - \Theta(0; g + a) - \Theta(\infty; g) - \Theta(0; f) - \Theta(0; f + a),$$

that is

$$\Theta(0;g) + \Theta(0;g+a) + \Theta(\infty;g) + \Theta(0;f) + \Theta(0;f+a) \le 5 - m$$

Hence

$$\Theta_f + \Theta_a = 5 - n - \xi + \Theta(\infty; f),$$

for some $\xi \ge 0$. Thus from (1.1) we obtain

$$5-n-\xi+\Theta(\infty; f)+\frac{1}{2}\min\{\sum_{x\notin S\cup\{0,\infty\}}\delta_2(x; f), \sum_{x\notin S\cup\{0,\infty\}}\delta_2(x; g)\}>\frac{10-n}{2},$$

which implies that

$$\Theta(\infty; f) + \frac{1}{2} \min\{\sum_{x \notin S \cup \{0,\infty\}} \delta_2(x; f), \sum_{x \notin S \cup \{0,\infty\}} \delta_2(x; g)\} > \frac{n+2\xi}{2},$$

which leads to contradiction for $n \ge 4$. Similarly we may arrive at contradiction from (1.2) and (1.3). Hence $\eta = 1$. Therefore $F \equiv G$. Now from (1.1), we have

$$\Theta_{f} + \Theta_{g} > \frac{10 - n}{2} - \frac{1}{2} \min\{\sum_{x \notin S \cup \{0, \infty\}} \delta_{2}(x; f), \sum_{x \notin S \cup \{0, \infty\}} \delta_{2}(x; g)\} \\ \geq \frac{10 - n}{2} - 1 > \frac{4}{n - 1},$$

for n = 4, 5.

Similarly we can verify that the inequalities (1.2) and (1.3) also imply $\Theta_f + \Theta_g > \frac{4}{n-1}$, for n = 4, 5. Thus our theorem follows from *Lemma 2.7*.

We omit the proof of Theorem 1.2 as it can be carried out exactly as in the above proof except in the Subcase 2.3 when we obtain $F \equiv G$ we should apply *Lemma 2.8* to obtain our desired result instead of *Lemma 2.7* as in the previous case.

REFERENCES

- 1. A. BANERJEE AND S. MAJUMDER, On unique range set of meromorphic functions with deficient poles, Facta Universitatis (Niš) Ser. Math. Inform. **28(1)**(2013), 1-14.
- 2. M. FANG AND X. HUA, *Meromorphic functions that share one finite set CM*, J. Nanjing Univ. Math. Biquarterly, **15(1)**(1998), 15-22.
- 3. G. FRANK AND M.R. REINDERS, A unique range set for meromorphic functions with 11 elements, Complex Var. Theory Appl. 37(1998), 185-193.
- F. GROSS, Factorization of meromorphic functions and some open problems, Proc. Conf. Univ. Kentucky, Lexington, Ky(1976) Lecture notes in Math. Springer(Berlin), 599 (1977), 51-69.
- 5. F. GROSS AND C.C. YANG, On preimage range sets of meromorphic functions, Proc. Japan Acad. 58(1982), 17-20.
- 6. W.K. HAYMAN, Meromorphic Functions, Clarendon Press, Oxford(1964).
- 7. I. LAHIRI, Value distribution of vertain differential polynomials, Int. J. Math. Math. Sci. 28(2)(2001), 83-91.
- 8. I. LAHIRI, Weighted sharing and uniqueness of meromorphic functions, Nagoya Math. J. 161(2001), 193-206.
- 9. I. LAHIRI, Weighted value sharing and uniqueness of meromorphic functions, Complex Var. Theory Appl., **46** (2001), 241-253.
- 10. I. LAHIRI, A question of gross and weighted sharing of a finite set by meromorphic functions, Applied Math. E-Notes, **2**(2002), 16-21.

- 11. I. LAHIRI AND A. BANERJEE, Uniqueness of meromorphic functionswith deficient poles, Kyungpook Math. J., 44(2004), 575-584.
- 12. I.LAHIRI AND S.DEWAN, Value distribution of the product of a meromorphic function and its derivative, Kodai Math. J., **26**(2003), 95-100.
- 13. A.Z. MOHON'KO, On the Nevanlinna Characteristics of some meromorphic functions, Theory of Funct. Funct. Anal. Appl., **14**(1971), 83-87.
- 14. P. LI AND C.C. YANG, Some further results on the unique range sets of meromorphic functions, Kodai Math. J., 13(1995),437-450.
- 15. P. LI AND C.C. YANG, On the unique range sets of meromorphic functions, Proc. Amer. Math. Soc. 124(1996), 177-185.
- 16. H.X. YI, On a problem of Gross, Sci. China Ser.A, 24(1994), 1134-1144.
- 17. H.X. Y₁, A question of Gross and the uniqueness of entire functions, Nagoya Math.J. **138** (1995), 169-177.
- 18. H.X. Y₁, Unicity theorems for meromorphic or entire functions III, Bull. Austral Math. Soc. **53**(1996), 71-82.
- 19. H.X. Y₁, *Meromorphic functions that share one or two values II*, Kodai Math.J. **22**(1999), 264-272.

Arindam Sarkar Department of Mathematics Kandi Raj College P.O. Kandi Murshidabad, West Bengal India-742137 arindam_ku@rediffmail.com

Paulomi Chattopadhyay Department of Mathematics Academy of Technology Hoogly, West Bengal India-712121 paulomi.chattopadhyay@rediffmail.com