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BOUNDEDNESS OF TOEPLITZ TYPE OPERATOR ASSOCIATED TO
SINGULAR INTEGRAL OPERATOR ON Lp SPACES WITH VARIABLE

EXPONENT
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Abstract. In this paper, the boundedness for some Toeplitz type operator related to the
singular integral operator on Lp spaces with variable exponent is obtained by using a
sharp estimate of the operator.
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1. Introduction

As the development of the singular integral operators(see [5][14][15]), their
commutators have been well studied. In [1][12][13], the authors prove that the
commutators generated by the singular integral operators and BMO functions are
bounded on Lp(Rn) for 1 < p < ∞. In [7][9][10], some Toeplitz type operators associ-
ated to the singular integral operators and strongly singular integral operators are
introduced, and the boundedness for the operators are obtained. In the last years,
a theory of Lp spaces with variable exponent has been developed because of its
connections with some questions in fluid dynamics, calculus of variations, differ-
ential equations and elasticity(see [2][3][4][6][11] and their references). Karlovich
and Lerner study the boundedness of the commutators of singular integral opera-
tors on Lp spaces with variable exponent(see [6]). Motivated by these papers, the
main purpose of this paper is to introduce some Toeplitz type operator related to
the singular integral operator and prove the boundedness for the operator on Lp

spaces with variable exponent by using a sharp estimate of the operator.
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2. Preliminaries and Results

First, let us introduce some notations. Throughout this paper, Q will denote a
cube of Rn with sides parallel to the axes. For any locally integrable function f and
δ > 0, the sharp function of f is defined by

f #
δ (x) = sup

Q�x

(
1
|Q|

∫
Q
| f (y) − fQ|δdy

)1/δ

,

where, and in what follows, fQ = |Q|−1
∫

Q
f (x)dx. It is well-known that(see [5][14])

f #
δ (x) ≈ sup

Q�x
inf
c∈C

(
1
|Q|

∫
Q
| f (y) − c|δdy

)1/δ

.

We write that f # = f #
δ if δ = 1. We say that f belongs to BMO(Rn) if f # belongs

to L∞(Rn) and define || f ||BMO = || f #||L∞ . Let M be the Hardy-Littlewood maximal
operator defined by

M( f )(x) = sup
Q�x
|Q|−1

∫
Q
| f (y)|dy;

For k ∈ N, we denote by Mk the operator M iterated k times, i.e., M1( f )(x) =M( f )(x)
and

Mk( f )(x) =M(Mk−1( f ))(x) when k � 2.

Let Φ be a Young function and Φ̃ be the complementary associated to Φ, we
denote that the Φ-average by, for a function f ,

|| f ||Φ,Q = inf
{
λ > 0 :

1
|Q|

∫
Q
Φ

( | f (y)|
λ

)
dy � 1

}

and the maximal function associated to Φ by

MΦ( f )(x) = sup
Q�x
|| f ||Φ,Q.

The Young functions to be using in this paper are Φ(t) = t(1 + lo�t)r and Φ̃(t) =
exp(t1/r), the corresponding average and maximal functions denoted by || · ||L(lo�L)r,Q,
ML(lo�L)r and || · ||expL1/r,Q, MexpL1/r . Following [12][13], we know the generalized
Hölder’s inequality:

1
|Q|

∫
Q
| f (y)�(y)|dy � || f ||Φ,Q||�||Φ̃,Q

and the following inequality, for r, rj � 1, j = 1, · · ·, l with 1/r = 1/r1 + · · ·+ 1/rl, and
any x ∈ Rn, b ∈ BMO(Rn),

|| f ||L(lo�L)1/r,Q �ML(lo�L)1/r ( f ) � CML(lo�L)l ( f ) � CMl+1( f ),
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|| f − fQ||expLr,Q � C|| f ||BMO,

| f2k+1Q − f2Q| � Ck|| f ||BMO.

The non-increasing rearrangement of a measurable function f on Rn is defined
by

f ∗(t) = inf{λ > 0 : |{x ∈ Rn : | f (x)| > λ}| � t} (0 < t < ∞).

For λ ∈ (0, 1) and a measurable function f on Rn, the local sharp maximal function
of f is defined by

M#
λ( f )(x) = sup

Q�x
inf
c∈C(( f − c)χQ)∗(λ|Q|).

Let p : Rn → [1,∞) be a measurable function. Denote by Lp(·)(Rn) the sets of all
Lebesgue measurable functions f on Rn such that m(λ f , p) < ∞ for some λ = λ( f ) >
0, where

m( f , p) =
∫

Rn
| f (x)|p(x)dx.

The sets becomes a Banach spaces with respect to the following norm

|| f ||Lp(·) = inf{λ > 0 : m( f/λ, p) � 1}.
Denote by M(Rn) the sets of all measurable functions p : Rn → [1,∞) such that the
Hardy-Littlewood maximal operator M is bounded on Lp(·)(Rn) and the following
holds

1 < p− = ess inf
x∈Rn

p(x), ess sup
x∈Rn

p(x) = p+ < ∞. (1)

In recent years, the boundedness of classical operators on spaces Lp(·)(Rn) have
attracted a great attention (see [4-7],[10],[19] and their references).

In this paper, we will study some integral operators as following(see [14][15]).
Definition. Let T : S→ S′ be a linear operator such that T is bounded on Lp0 (Rn)

for some 1 < p0 < ∞ and weak (L1, L1)-bounded and there exists a locally integrable
function K(x, y) on Rn × Rn \ {(x, y) ∈ Rn × Rn : x = y} such that

T( f )(x) =
∫

Rn
K(x, y) f (y)dy

for every bounded and compactly supported function f , where K satisfies: for fixed
δ > 0,

|K(x, y)| � C|x − y|−n

and
|K(y, x) − K(z, x)| + |K(x, y)− K(x, z)| � C|y − z|δ|x − z|−n−δ

if 2|y − z| � |x − z|.
Moreover, let b be a locally integrable function on Rn. The Toeplitz type operator

related to T is defined by

Tb =

m∑
k=1

Tk,1MbTk,2,
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where Tk,1 are the singular integral operator T or ±I(the identity operator), Tk,2 are
the linear operators for k = 1, ...,m and Mb( f ) = b f .

Note that the classical Calderón-Zygmund singular integral operator satisfies
Definition(see [14][15]). Also note that the commutator is a particular operator of
the Toeplitz type operator Tb. The Toeplitz type operator Tb are the non-trivial
generalizations of the commutator. It is well known that commutators are of great
interest in harmonic analysis and have been widely studied by many authors (see
[12][13]). In recent years, the boundedness of classical operators on spaces Lp(·)(Rn)
have attracted a great attention (see [2-4][6][11] and their references). The main
purpose of this paper has twofold, first, we establish a sharp estimate for the
operator Tb, and second, we prove the boundedness for the operator on Lp spaces
with variable exponent by using the sharp estimate.

We shall prove the following theorems.
Theorem 1. Let T be the singular integral operators as Definition, 0 < δ < 1

and b ∈ BMO(Rn). If T1(�) = 0 for any � ∈ Lu(Rn)(1 < u < ∞), then there exists a
constant C > 0 such that for any f ∈ L∞0 (Rn) and x̃ ∈ Rn,

(Tb( f ))#
δ(x̃) � C||b||BMO

m∑
k=1

M2(Tk,2( f ))(x̃).

Theorem 2. Let T be the singular integral operators as Definition, p(·) ∈ M(Rn)
and b ∈ BMO(Rn). If T1(�) = 0 for any � ∈ Lu(Rn)(1 < u < ∞) and Tk,2 are the
bounded linear operators on Lp(·)(Rn) for k = 1, ...,m, then Tb is bounded on Lp(·)(Rn),
that is

||Tb( f )||Lp(·) � C||b||BMO|| f ||Lp(·) .

Corollary 1. Let [b,T]( f ) = bT( f ) − T(b f ) be the commutator generated by the
singular integral operator T and b. Then Theorems 1 and 2 hold for [b,T].

3. Proofs of Theorems

To prove the theorems, we need the following lemmas.
Lemma 1.([5, p.485]) Let 0 < p < q < ∞. We define that, for any function f � 0

and 1/r = 1/p − 1/q,

|| f ||WLq = sup
λ>0
λ|{x ∈ Rn : f (x) > λ}|1/q, Np,q( f ) = sup

E
|| fχE||Lp/||χE||Lr ,

where the sup is taken for all measurable sets E with 0 < |E| < ∞. Then

|| f ||WLq � Np,q( f ) � (q/(q − p))1/p|| f ||WLq .

Lemma 2.[12] Let r j � 1 for j = 1, · · ·, l, we denote that 1/r = 1/r1 + · · · + 1/rl.
Then

1
|Q|

∫
Q
| f1(x) · · · fl(x)�(x)|dx � || f ||expLr1 ,Q · · · || f ||expLrl ,Q||�||L(lo�L)1/r,Q.
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Lemma 3.([6]) Let p : Rn → [1,∞) be a measurable function satisfying (1). Then
L∞0 (Rn) is dense in Lp(·)(Rn).

Lemma 4.([6]) Let f ∈ L1
loc(R

n) and � be a measurable function satisfying

|{x ∈ Rn : |�(x)| > α}| < ∞ for all α > 0.

Then ∫
Rn
| f (x)�(x)|dx � Cn

∫
Rn

M#
λn

( f )(x)M(�)(x)dx.

Lemma 5.([6]) Let p : Rn → [1,∞) be a measurable function satisfying (1). If
f ∈ Lp(·)(Rn) and � ∈ Lp′(·)(Rn) with p′(x) = p(x)/(p(x)− 1). Then f� is integrable on
Rn and ∫

Rn
| f (x)�(x)|dx � C|| f ||Lp(·) ||�||Lp′(·) .

Lemma 6.([6]) Let p : Rn → [1,∞) be a measurable function satisfying (1). Set

|| f ||′Lp(·) = sup
{∫

Rn
| f (x)�(x)|dx : f ∈ Lp(·)(Rn), � ∈ Lp′(·)(Rn)

}
.

Then || f ||Lp(·) � || f ||′
Lp(·) � C|| f ||Lp(·) .

Lemma 7.([6][8]) Let δ > 0, 0 < λ < 1 and f ∈ Lδloc(R
n). Then

M#
λ( f )(x) � (1/λ)1/δ f #

δ (x).

Proof of Theorem 1. It suffices to prove for f ∈ L∞0 (Rn), the following inequality
holds: (

1
|Q|

∫
Q

∣∣∣Tb( f )(x) − C0

∣∣∣ dx

)1/δ

� C||b||BMO

m∑
k=1

M2(Tk,2( f ))(x̃).

Without loss of generality, we may assume Tk,1 are T(k = 1, ...,m). Fix a cube
Q = Q(x0, d) and x̃ ∈ Q. By T1(�) = 0, we have

Tb( f )(x) = Tb−b2Q( f )(x) = T(b−b2Q)χ2Q ( f )(x) + T(b−b2Q)χ(2Q)c ( f )(x) = f1(x) + f2(x)

and
(

1
|Q|

∫
Q

∣∣∣Tb( f )(x) − f2(x0)
∣∣∣δ dx

)1/δ

� C
(

1
|Q|

∫
Q
| f1(x)|δdx

)1/δ

+ C
(

1
|Q|

∫
Q
| f2(x) − f2(x0)|δdx

)1/δ

= I1 + I2.

For I1, by the weak (L1, L1) boundedness of T and Lemma 1 and 2, we obtain

(
1
|Q|

∫
Q
|Tk,1M(b−b2Q)χ2Q Tk,2( f )(x)|δdx

)1/δ
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� |Q|−1
||Tk,1M(b−b2Q)χ2Q Tk,2( f )χQ||Lδ

|Q|1/δ−1

� C|Q|−1||Tk,1M(b−b2Q)χ2Q Tk,2( f )||WL1

� C|Q|−1||M(b−b2Q)χ2Q Tk,2( f )||L1

� C|Q|−1
∫

2Q
|b(x) − b2Q||Tk,2( f )(x)|dx

� C||b − b2Q||expL,2Q||Tk,2( f )||L(lo�L),2Q

� C||b||BMOM2(Tk,2( f ))(x̃),

thus

I1 � C
m∑

k=1

(
1
|Q|

∫
Q
|Tk,1M(b−b2Q)χ2Q Tk,2( f )(x)|δdx

)1/δ

� C||b||BMO

m∑
k=1

M2(Tk,2( f ))(x̃).

For I2, we get, for x ∈ Q,

|Tk,1M(b−b2Q)χ(2Q)c T
k,2( f )(x) − Tk,1M(b−b2Q)χ(2Q)c T

k,2( f )(x0)|
�

∫
(2Q)c
|b(y) − b2Q|K(x, y) − K(x0, y)||Tk,2( f )(y)|dy

≤ C
∞∑
j=1

∫
2 jd≤|y−x0 |<2 j+1d

|b(y) − b2Q| |x − x0|δ
|x0 − y|n+δ |T

k,2( f )(y)|dy

≤ C
∞∑
j=1

2− jδ 1
|2 j+1Q|

∫
2 j+1Q
|b(y) − b2Q||Tk,2( f )(y)|dy

� C
∞∑
j=1

2− jδ||b − b2Q||expL,2 j+1Q||Tk,2( f )||L(lo�L),2j+1Q

� C
∞∑
j=1

j2− jδ||b||BMOM2(Tk,2( f ))(x̃)

≤ C||b||BMOM2(Tk,2( f ))(x̃),

thus

I2 �
C
|Q|

∫
Q

m∑
k=1

|Tk,1M(b−b2Q)χ(2Q)c T
k,2( f )(x) − Tk,1M(b−b2Q)χ(2Q)c T

k,2( f )(x0)|dx

� C||b||BMO

m∑
k=1

M2(Tk,2( f ))(x̃).
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This completes the proof of Theorem 1.
Proof of Theorem 2. By Lemma 3-6, we get, for f ∈ L∞0 (Rn) and � ∈ Lp′(·)(Rn),

∫
Rn
|Tb( f )(x)�(x)|dx � C

∫
Rn

M#
λn

(Tb( f ))(x)M(�)(x)|dx

� C
∫

Rn
(Tb( f ))#

δ(x)M(�)(x)dx

� C||b||BMO

m∑
k=1

∫
Rn

M2(Tk,2( f ))(x)M(�)(x)dx

� C||b||BMO

m∑
k=1

||M2(Tk,2( f ))||Lp(·) ||M(�)||Lp′(·)

� C||b||BMO

m∑
k=1

||Tk,2( f )||Lp(·) ||M(�)||Lp′(·)

� C||b||BMO|| f ||Lp(·) ||�||Lp′(·) ,

thus, by Lemma 7,
||Tb( f )||Lp(·) � || f ||Lp(·) .

This completes the proof of Theorem 2.
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