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FORCING DETOUR MONOPHONIC NUMBER OF A GRAPH∗

P. Titus and K. Ganesamoorthy

Abstract. For a connected graph G = (V,E) of order at least two, a chord of a path P is an
edge joining two non-adjacent vertices of P. A path P is called a monophonic path if it is
a chordless path. A longest x − y monophonic path is called an x − y detour monophonic
path. A set S of vertices of G is a detour monophonic set of G if each vertex v of G lies on an
x− y detour monophonic path for some elements x and y in S. The minimum cardinality
of a detour monophonic set of G is the detour monophonic number of G and is denoted
by dm(G). A subset T of a minimum detour monophonic set S of G is a forcing detour
monophonic subset for S if S is the unique minimum detour monophonic set containing
T. A forcing detour monophonic subset for S of minimum cardinality is a minimum
forcing detour monophonic subset of S. The forcing detour monophonic number fdm(S) in G is
the cardinality of a minimum forcing detour monophonic subset of S. The forcing detour
monophonic number of G is fdm(G) = min{ fdm(S)}, where the minimum is taken over all
minimum detour monophonic sets S in G. We determine bounds for it and find the
forcing detour monophonic number of certain classes of graphs. It is shown that for
every pair a, b of positive integers with 0 ≤ a < b and b ≥ 2, there exists a connected graph
G such that fdm(G) = a and dm(G) = b.

1. Introduction

By a graph G = (V,E) we mean a finite undirected connected graph without
loops or multiple edges. The order and size of G are denoted by p and q respectively.
For basic graph theoretic terminology we refer to Harary [5]. The distance d(u, v)
between two vertices u and v in a connected graph G is the length of a shortest
u − v path in G. A u − v path of length d(u, v) is called a u − v geodesic. For a vertex
v of G, the eccentricity e(v) is the distance between v and a vertex farthest from
v. The minimum eccentricity among the vertices of G is the radius, rad G and the
maximum eccentricity is its diameter, diam G of G. Two vertices u and v of G are
called antipodal if d(u, v) = diam G. The nei�hborhood of a vertex v is the set N(v)
consisting of all vertices u which are adjacent with v. The closed nei�hborhood of a
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vertex v is the set N[v] = N(v)
⋃{v}. A vertex v is an extreme vertex if the subgraph

induced by its neighbors is complete.
The detour distance D(u, v) between two vertices u and v in G is the length of a

longest u − v path in G. A u − v path of length D(u, v) is called a u − v detour. It is
known that D is a metric on the vertex set V of G. The concept of detour distance
was introduced in [1] and further studied in [2]. The closed detour interval ID[x, y]
consists of x, y, and all the vertices in some x− y detour of G. For S ⊆ V, ID[S] is the
union of the sets ID[x, y] for all x, y ∈ S. A set S of vertices of a graph G is a detour
set if ID[S] = V, and the minimum cardinality of a detour set is the detour number
dn(G). The concept of detour number of a graph was introduced in [3] and further
studied in [4].

A chord of a path P is an edge joining two non-adjacent vertices of P.A path P is
called a monophonic path if it is a chordless path. A longest x− y monophonic path is
called an x− y detour monophonic path. A set S of vertices of G is a detour monophonic
set if each vertex v of G lies on an x − y detour monophonic path for some x, y ∈ S.
The minimum cardinality of a detour monophonic set of G is the detour monophonic
number of G and is denoted by dm(G). The detour monophonic set of cardinality
dm(G) is called dm-set. The detour monophonic number of a graph was introduced
in [7] and further studied in [6]. There are interesting applications of these concepts
to the problem of designing the route for a shuttle and communication network
design.

For the graph G given in Figure 1.1, S1 = {z,w, v}, S2 = {z,w, u} and S3 = {z,w, x}
are the minimum detour monophonic sets of G and so dm(G)=3.

� �
v u

� �
w x

�
y

�
z

Figure 1.1: Graph G

A connected graph G may contain more than one minimum detour monophonic
sets. For example, the graph G given in Figure.1.1 contains three minimum detour
monophonic sets. For each minimum detour monophonic set S in G there is always
some subset T of S that uniquely determines S as the minimum detour monophonic
set containing T. Such sets are called “forcing detour monophonic subsets ”and we
discuss these sets in this paper.

The following theorems will be used in the sequel.

Theorem 1.1. [7] Each extreme vertex of a connected graph G belongs to every
detour monophonic set of G.
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Theorem 1.2. [7] For the complete graph Kp(p ≥ 2), dm(Kp) = p.

Theorem 1.3. [7] No cutvertex of a connected graph G belongs to any minimum
detour monophonic set of G.

Theorem 1.4. [7] For the cycle Cn(n ≥ 3),

dm(Cn) =

⎧
⎪⎪⎨
⎪⎪⎩

2 if n is even
3 if n is odd

Throughout the paper G denotes a connected graph with at least two vertices.

2. Forcing Detour Monophonic Number

Definition 2.1. Let G be a connected graph and let S be a minimum detour monophonic
set of G. A subset T of a minimum detour monophonic set S of G is a forcing detour
monophonic subset for S if S is the unique minimum detour monophonic set containing T.
A forcing detour monophonic subset for S of minimum cardinality is a minimum forcing
detour monophonic subset of S. The forcing detour monophonic number fdm(S) in G is
the cardinality of a minimum forcing detour monophonic subset of S. The forcing detour
monophonic number of G is fdm(G) = min{ fdm(S)}, where the minimum is taken over all
minimum detour monophonic sets S in G.

Example 2.1. For the graph G given in Figure 1.1, S1 = {z,w, v}, S2 = {z,w, u} and
S3 = {z,w, x} are the minimum detour monophonic sets of G. It is clear that fdm(S1) = 1,
fdm(S2) = 1 and fdm(S3) = 1 so that fdm(G) = 1. For the graph G given in Figure 2.1,
S = {y, v} is the unique minimum detour monophonic set of G and so fdm(G) = 0.

� �
x u

� �z w

�� vy

Figure 2.1: Second graph G

The next theorem follows immediately from the definition of the detour mono-
phonic number and forcing detour monophonic number of a graph G.

Theorem 2.2. For a connected graph G, 0 ≤ fdm(G) ≤ dm(G) ≤ p.
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Remark 2.1. The bounds in Theorem 2.2 are sharp. For the graph G given in Figure
2.1, fdm(G) = 0. By Theorem 1.2, for the complete graph Kp(p ≥ 2), dm(Kp) = p. The
inequalities in Theorem 2.2 are strict. For the graph G given in Figure 1.1, dm(G) = 3 and
fdm(G) = 1. Thus 0 < fdm(G) < dm(G) < p.

The following theorem is an easy consequence of the definitions of the detour
monophonic number and forcing detour monophonic number. In fact, the theorem
characterizes graphs G for which the lower bound in Theorem 2.2 is attained and
also graphs G for which fdm(G) = 1 and fdm(G) = dm(G).

Theorem 2.3. Let G be a connected graph . Then

(i) fdm(G) = 0 if and only if G has a unique minimum detour monophonic set.

(ii) fdm(G) = 1 if and only if G has at least two minimum detour monophonic sets, one of
which is a unique minimum detour monophonic set containing one of its elements, and

(iii) fdm(G) = dm(G) if and only if no minimum detour monophonic set of G is the unique
minimum detour monophonic set containing any of its proper subsets.

Definition 2.4. A vertex v of a connected graph G is said to be a detour monophonic
vertex of G if v belongs to every minimum detour monophonic set of G.

We observe that if G has a unique minimum detour monophonic set S, then
every vertex in S is a detour monophonic vertex of G. Also, if x is an extreme vertex
of G, then x is a detour monophonic vertex of G. For the graph G given in Figure
1.1, w and z are the detour monophonic vertices of G.

The following theorem and corollary follows immediately from the definitions
of detour monophonic vertex and forcing detour monophonic subset of G.

Theorem 2.5. Let G be a connected graph and let �dm be the set of relative complements
of the minimum forcing detour monophonic subsets in their respective minimum detour
monophonic sets in G. Then

⋂
F∈�dm

F is the set of detour monophonic vertices of G.

Corollary 2.6. Let G be a connected graph and let S be a minimum detour monophonic
set of G. Then no detour monophonic vertex of G belongs to any minimum forcing detour
monophonic subset of S.

Theorem 2.7. Let G be a connected graph and let M be the set of all detour monophonic
vertices of G. Then fdm(G) ≤ dm(G)− |M|.

Proof. Let S be any minimum detour monophonic set of G. Then dm(G) = |S|,
M ⊆ S and S is the unique minimum detour monophonic set containing S −M.
Thus fdm(G) ≤ |S −M| = |S| − |M| = dm(G) − |M|.

Corollary 2.8. If G is a connected graph with l extreme vertices, then fdm(G) ≤ dm(G)− l.
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Figure 2.2: Third graph G

Remark 2.2. The bound in Theorem 2.7 is sharp. For the graph G given in Figure 1.1,
dm(G) = 3 and fdm(G) = 1. Also, M = {w, z} is the set of all detour monophonic vertices
of G and so fdm(G) = dm(G) − |M|. Also the inequality in Theorem 2.7 can be strict. For
the graph G given in Figure 2.2, S1 = {x, v} and S2 = {u,w} are the minimum detour
monophonic sets so that dm(G) = 2 and fdm(G) = 1. Also, no vertex of G is a detour
monophonic vertex of G, we have fdm(G) < dm(G) − |M|.

Theorem 2.9. Let G be a connected graph and let S be a minimum detour monophonic set
of G. Then no cutvertex of G belongs to any minimum forcing detour monophonic subset
of S.

Proof. Let v be a cutvertex of G. By Theorem 1.3, v does not belong to any minimum
detour monophonic set of G. Since any minimum forcing detour monophonic
subset of S is a subset of S, the result follows from Theorem 2.5.

Theorem 2.10. If G is a connected graph with dm(G) = 2, then fdm(G) ≤ 1.

Proof. Let dm(G) = 2. Then by Theorem 2.2, fdm(G) ≤ 2. Suppose that fdm(G) = 2.
Then by Theorems 2.3(i) and 2.3(iii), G has at least two minimum detour mono-
phonic sets and no minimum detour monophonic set of G is the unique minimum
detour monophonic set containing any of its proper subsets. Since dm(G) = 2, there
exists a unique element, say x, is common for any two minimum detour mono-
phonic sets, say S1 and S2. Let S1 = {x, u} and S2 = {x, v}. Since S1 is a minimum
detour monophonic set, v lies on an x−u detour monophonic path. Similarly, since
S2 is a minimum detour monophonic set, u lies on an x − v detour monophonic
path. Then the vertices x, u and v lie on a cycle. Let C be a longest cycle containing
the vertices x, u and v. Then the length of C is more than 4. If C is an even cycle,
then either S1 or S2 is not a detour monophonic set of G, which is a contradiction.
If C is an odd cycle, then any internal vertex of an x − u geodesic does not lie on
an x − u detour monophonic path and so S1 is not a detour monophonic set of G,
which is a contradiction. Hence fdm(G) ≤ 1.

Now, we proceed to determine the forcing detour monophonic number of cer-
tain classes of graphs.
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Theorem 2.11. For any cycle Cn(n ≥ 4),

fdm(Cn) =

⎧
⎪⎪⎨
⎪⎪⎩

1 if n is even
3 if n is odd

Proof. Let Cn : v1, v2, . . . , vm, vm+1, . . . , vn, v1 be a cycle of order n.
Case (i) n is even. Let n = 2m. Then every minimum detour monophonic set of
Cn consists of a pair of antipodal vertices and Cn has exactly m minimum detour
monophonic sets. Clearly every minimum detour monophonic set containing one
of its elements. Then by Theorem 2.3(ii), fdm(Cn) = 1.
Case (ii) n is odd. Let n = 2m+ 1. It is clear that no two point set will form a detour
monophonic set of Cn. Now, {v1, v2, v3} is a minimum detour monophonic set of Cn

and so dm(Cn) = 3. We observe that any minimum detour monophonic set of Cn is
any one of the following.

(i) any three consecutive vertices
(ii) a vertex and its antipodal vertices
(iii) any three non-adjacent vertices
Then clearly no minimum detour monophonic set of Cn is the unique detour

monophonic set containing any of its proper subsets. Hence by Theorem 2.3(iii),
fdm(Cn) = dm(G) = 3.

Theorem 2.12. For any complete graph G = Kp(p ≥ 2) or any non-trivial tree G = T,
fdm(G) = 0.

Proof. For G = Kp, it follows from Theorem 1.2 that the set of all vertices of G is the
unique minimum detour monophonic set of G. Now, it follows from Theorem 2.3
(i) that fdm(G) = 0. If G is a non-trivial tree, then by Theorems 1.1 and 1.3, the set of
all endvertices of G is the unique minimum detour monophonic set of G and so by
Theorem 2.3 (i), fdm(G) = 0 .

Theorem 2.13. For the complete bipartite graph G = Km,n(m, n ≥ 2),

fdm(G) =

⎧
⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

0 if 2 = m < n or 3 = m < n
1 if 2 = m = n or 3 = m = n
3 if 4 = m ≤ n
4 if 5 ≤ m ≤ n

Proof. We prove this theorem by considering four cases. Let U = {u1, u2, . . . , um}
and W = {w1,w2, . . . ,wn} be the bipartition of G, where m ≤ n.
Case 1. 2 = m = n or 3 = m = n. Then U and W are the only minimum detour
monophonic set of G and so by Theorem 2.3(ii), fdm(G) = 1.
Case 2. 2 = m < n or 3 = m < n. Then U is the unique minimum detour monophonic
set of G and so by Theorem 2.3(i), fdm(G) = 0.
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Case 3. 4 = m ≤ n. If 4 = m = n, then the minimum detour monophonic sets of
G are U, W and any set got by choosing any two elements from each of U and W.
Clearly, neither an 1-element or nor a 2-element subset of any minimum detour
monophonic set is a forcing subset and any 3-element subset of U is a forcing subset
for U. Hence fdm(G) = 3. If 4 = m < n, then the minimum detour monophonic sets
of G are U and any set got by choosing any two elements from each of U and W.
Then similar to the above argument, we have fdm(G) = 3.

Case 4. 5 ≤ m ≤ n. Then any minimum detour monophonic set is got by choosing
any two elements from each of U and W, and G has at least two minimum detour
monophonic sets. Hence dm(G) = 4. Clearly, no minimum detour monophonic set
of G is the unique minimum detour monophonic set containing any of its proper
subsets. Then by Theorem 2.3(iii), we have fdm(G) = dm(G) = 4.

Theorem 2.14. For every pair a, b of positive integers with 0 ≤ a < b and b ≥ 2, there
exists a connected graph G such that fdm(G) = a and dm(G) = b.

Proof. If a = 0, let G = Kb. Then by Theorem 2.12, fdm(G) = 0 and by Theorem 1.2,
dm(G) = b. Thus we assume that 0 < a < b. We consider four cases.

� �
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Figure 2.3: G

Case 1. a = 1. If b = 2, then for any even cycle G, fdm(G) = a by Theorem 2.11
and dm(G) = b by Theorem 1.4. So, we assume that b ≥ 3. Let G be the graph
obtained from the cycle C5 : v1, v2, v3, v4, v5, v1 of order 5 by adding b − 2 new
vertices u1, u2, . . . , ub−2 and joining each ui(1 ≤ i ≤ b− 2) to v3; and joining two more
edges v2v5 and v2v4. The graph G is shown in Figure 2.3. Let S = {u1, u2, . . . , ub−2, v1}
be the set of all extreme vertices of G. By Theorem 1.1, every detour monophonic
set of G contains S. It is clear that S is not a detour monophonic set of G. It is
easily verified that S1 = S ∪ {v5}, S2 = S ∪ {v2} and S3 = S ∪ {v4} are the minimum
detour monophonic sets of G. Hence dm(G) = b. Moreover, since S1 is the unique
minimum detour monophonic set containing {v5}, it follows that fdm(S1) = 1 and so
fdm(G) = 1.

Case 2. a = 2. Then b ≥ 3. Let G be the graph obtained from the cycle C5 :
v1, v2, v3, v4, v5, v1 of order 5 by adding b− 2 new vertices u1, u2, . . . , ub−2 and joining
each ui(1 ≤ i ≤ b − 2) to v3. The graph G is shown in Figure 2.4. Let S =
{u1, u2, . . . , ub−2} be the set of all extreme vertices of G. By Theorem 1.1, every
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detour monophonic set of G contains S. Clearly S is not a detour monophonic set of
G. Also S∪ {x}, where x ∈ V(G)− S, is not a detour monophonic set of G. It is easily
verified that S1 = S ∪ {v1, v5}, S2 = S ∪ {v1, v4}, S3 = S ∪ {v2, v4}, S4 = S ∪ {v1, v2},
S5 = S ∪ {v4, v5} and S6 = S ∪ {v2, v5} are the minimum detour monophonic sets of
G. Hence dm(G) = b. If x is an element of Si(1 ≤ i ≤ 6), then {x} is a subset of at
least two minimum detour monophonic sets of G. Hence it follows from Theorem
2.3(i) and (ii) that fdm(G) ≥ 2. Since S1 is the unique minimum detour monophonic
set containing {v1, v5}, we have fdm(G) = 2.

� �
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Figure 2.4: G

Case 3. a ≥ 3 and b = a + 1. For each integer i with 0 ≤ i ≤ b, let Fi : ui, vi be
a path of order 2. Let G be the graph obtained from Fi(0 ≤ i ≤ b) by adding 2b
edges u0uj, v0vj for all j with 1 ≤ j ≤ b. The graph G is shown in Figure 2.5.
First we show that dm(G) = b. Let U = {u1, u2, . . .ub} and W = {v1, v2, . . .vb}. We
observe that a set S of vertices of G is a minimum detour monophonic set only if
S has the following two properties: (1) S contains exactly one vertex from each set
{uj, vj}(1 ≤ j ≤ b), and (2) S∩U � Ø and S∩W � Ø. Then (1) implies that dm(G) ≥ b.
Since S′ = {u2, u3, . . . , ub, v1} is a detour monophonic set of G with |S′| = b, it follows
that dm(G) = b = a + 1.

Now, we prove that fdm(G) = a. First assume that a minimum detour mono-
phonic set contains at least one vertex from U and W. Without loss of generality,
let S1 = {u2, u3, . . . , ub, v1} be a minimum detour monophonic set of G. We claim
that fdm(G) = b − 1. Let T be a subset of S1 such that |T| ≤ b − 2. Then there exist
at least two vertices, say x, y ∈ S1, such that x, y � T. Suppose that x = v1 and
y = uj for some j(2 ≤ j ≤ b). Now, S2 = (S1 − {v1, uj}) ∪ {u1, vj} satisfies (1) and (2)
and so S2 is a minimum detour monophonic set such that T ⊆ S2. Therefore S1 is
not the unique minimum detour monophonic set containing T and so T is not a
forcing subset of S1. Suppose that x = ui for some i(2 ≤ i ≤ b) and y = uj for some
j(2 ≤ j ≤ b) and i � j. Now, S3 = (S1 − {ui, uj})∪ {vi, vj} satisfies (1) and (2) and so S3

is a minimum detour monophonic set containing T. Hence T is not a forcing subset
of S1 and so fdm(S1) ≥ b − 1. Now, it is clear that S1 is the unique minimum detour
monophonic set containing {u2, u3, . . . , ub} so that fdm(S1) = b − 1. Hence it follows
that fdm(G) = b − 1 = a.
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Figure 2.5: G

Case 4. a ≥ 3 and b ≥ a + 2. Let Fi : li,mi, ni, oi, pi, qi, ri, li(1 ≤ i ≤ a) be “a” number
of copies of C7. Let G be the graph obtained from Fi(1 ≤ i ≤ a) by identifying
the vertices oi−1 of Fi−1 and li of Fi(2 ≤ i ≤ a); and adding b − a new vertices
z1, z2, . . . zb−a−1, z and joining each zi(1 ≤ i ≤ b − a − 1) to l1; and joining each
mi, ni(1 ≤ i ≤ a) to the vertices ri, qi, pi(1 ≤ i ≤ a); and joining the vertex z to oa.
The graph G is shown in Figure 2.6. Let S = {z1, z2, . . . zb−a−1, z} be the set of all
extreme vertices of G. Then by Theorem 1.1, every detour monophonic set of G
contains S. Clearly, S is not a detour monophonic set of G. We observe that every
minimum detour monophonic set contains exactly one vertex from {mi, ni} for every
i(1 ≤ i ≤ a). Thus dm(G) ≥ b. Since S1 = S∪{m1,m2, . . . ,ma} is a detour monophonic
set of G, it follows that dm(G) = b.

Next we show that fdm(G) = a. Since every minimum detour monophonic set of
G contains S, it follows from Theorem 2.7 that fdm(G) ≤ dm(G)− |S| = b− (b− a) = a.
Now, since dm(G) = b and every minimum detour monophonic set of G contains S,
it is easily seen that every minimum detour monophonic set S′ of G is of the form
S ∪ {x1, x2, . . . , xa}, where xi ∈ {mi, ni} for every i(1 ≤ i ≤ a). Let T be any proper
subset of S′ with |T| < a. Then there is a vertex x ∈ S′ − S such that x � T. If
x = mi(1 ≤ i ≤ a), then S′′ = (S′ − {mi}) ∪ {ni} is a minimum detour monophonic set
containing T. Similarly, if x = nj(1 ≤ j ≤ a), then S′′′ = (S′ −{nj})∪{mj} is a minimum
detour monophonic set containing T. Thus S′ is not the unique minimum detour
monophonic set containing T and so T is not a forcing subset of S′. This is true for
all minimum detour monophonic sets of G and so fdm(G) = a.
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