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ON A FIXED POINT THEOREM FOR A CYCLICAL KANNAN-TYPE
MAPPING ∗

Mitropam Chakraborty and Syamal Kumar Samanta

Abstract. This paper deals with an extension of a recent result by the authors generalizing
Kannan’s fixed point theorem based on a theorem of Vittorino Pata. The generalization
takes place via a cyclical condition.

1. Introduction

Somewhat in parallel with the renowned Banach contraction principle (see, for
instance, [3]), Kannan’s fixed point theorem has carved out a niche for itself in fixed
point theory since its inception in 1969 [4]. Let (X, d) be a metric space. If we define
T : X→ X to be a Kannan mapping provided there exists some λ ∈ [0, 1) such that

(1.1) d(Tx, Ty) ≤ λ
2

[d(x, Tx) + d(y, Ty)]

for each x, y ∈ X, then Kannan’s theorem essentially states that:

Every Kannan mapping in a complete metric space has a unique fixed point.

To see that the two results are independent of each other, one can turn to [14],
e.g., and Subrahmanyam has shown in [17] that Kannan’s theorem characterizes
metric completeness, i.e.: if every Kannan mapping on a metric has a fixed point,
then that space must necessarily be complete.

Kirk et al. [6] introduced the so-called cyclical contractive conditions to general-
ize Banach’s fixed point theorem and some other fundamental results in fixed point
theory. Further works in this aspect, viz. the cyclic representation of a complete
metric space with respect to a map, have been carried out in [5, 9, 16]. For the
treatment of cyclic contractions yielding fixed points, see [7, 8].
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Pata in [10], however, extended Banach’s result in a totally different direction
and ended up proving that if (X, d) is a complete metric space and T : X→ X a map
such that there exist fixed constants Λ ≥ 0, α � 1, and β ∈ [0, α] with

(1.2) d(Tx, Ty) ≤ (1 − ε)d(x, y) + Λεαψ(ε)[1 + d(x, x0) + d(y, x0)]β

for every ε ∈ [0, 1] and every x, y ∈ X (where ψ : [0, 1] → [0, ∞) is an increasing
function that vanishes with continuity at zero, and x0 ∈ X is an arbitrarily chosen
point), then T has a unique fixed point in X. Combining Pata’s theorem and the
cyclical framework, Alghamdi et al. have next come up with a theorem of their
own [1].

On the one hand, proofs of cyclic versions of Kannan’s theorem (as well as
that of various other important contractive conditions in metric fixed point theory,
including some best proximity point results) were given in [11, 12, 13, 16]; the
present authors, on the other hand, have already established an analogue of Pata’s
result that generalizes Kannan’s theorem instead [2]. Letting everything else denote
the same as in [10] except for fixing a slightly more general β ≥ 0, we have actually
shown the following:

Theorem 1.1. [2] If the inequality

(1.3)

d(Tx, Ty) ≤ 1 − ε
2

[d(x, Tx) + d(y, Ty]

+Λεαψ(ε)[1+ d(x, x0) + d(Tx, x0) + d(y, x0) + d(Ty, x0)]β

is satisfied ∀ε ∈ [0, 1] and ∀x, y ∈ X, then T possesses a unique fixed point

x∗ = Tx∗ (x∗ ∈ X).

In this article, we want to utilize Theorem 1.1 to bridge the gap by providing the
only remaining missing link, viz. a fixed point theorem for cyclical contractive
mappings in the sense of both Kannan and Pata.

2. The Main Result

Let us start by recalling a definition which has its roots in [6]; we shall make
use of a succinct version of this as furnished in [5]:

Definition 2.1. [5] Let X be a non-empty set, m ∈ N, and T : X → X a map. Then
we say that

⋃m
i=1 Ai (where Ø � Ai ⊂ X∀i ∈ {1, 2, . . . , m}) is a cyclic representation

of X with respect to T iff the following two conditions hold.

1. X =
⋃m

i=1 Ai;
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2. T(Ai) ⊂ Ai+1 for 1 ≤ i ≤ m − 1, and T(Am) ⊂ A1.

Now let (X, d) be a complete metric space. We have to first assignψ : [0, 1]→ [0, ∞)
to be an increasing function that vanishes with continuity at zero. With this, we
are ready to formulate our main result, viz.:

Theorem 2.1. Let Λ ≥ 0, α � 1, and β ≥ 0 be fixed constants. If A1, . . . , Am are
non-empty closed subsets of X with Y =

⋃m
i=1 Ai, and if T : Y → Y is such a map that⋃m

i=1 Ai is a cyclic representation of Y with respect to T, then, provided the inequality

(2.1)

d(Tx, Ty) �
1 − ε

2
[d(x, Tx) + d(y, Ty)]

+Λεαψ(ε)[1+ d(x, x1) + d(Tx, x1) + d(y, x1) + d(Ty, x1)]β

is satisfied ∀ε ∈ [0, 1] and ∀x ∈ Ai, y ∈ Ai+1 (where Am+1 = A1 and, as in [10], x1 ∈ Y is
arbitrarily chosen — to serve as a sort of “zero” of the space Y), T has a unique fixed point
x∗ ∈ ⋂m

i=1 Ai.

Remark 2.1. Since we can always redefineΛ to keep (2.1) valid no matter what initial x1 ∈ X
we choose, we are in no way restricting ourselves by choosing that x1 as our “zero” instead
of a generic x ∈ X [10].

Proof

For the sake of brevity and clarity both, we shall henceforth exploit the following
notation when j > m:

Aj : = Ai,

where i ≡ j (mod m) and 1 ≤ i ≤ m.

Let’s begin by choosing our zero from A1, i.e., we fix x1 ∈ A1. Starting from x1,
we then introduce the sequence of Picard iterates

xn = Txn−1 = Tn−1x1 (n � 2).

Also, let

cn : = d(xn, x1) (n ∈N).

With the assumption that xn � xn+1,∀n ∈N, (2.1) gives us

d(xn+1, xn) = d(Txn, Txn−1)

�
1
2

[d(xn+1, xn) + d(xn, xn−1)]
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if we consider the case where ε = 0. But this means that

0 ≤ d(xn+1, xn)
� d(xn, xn−1)
≤ · · ·
� d(x2, x1)
= c2,(2.2)

whence the next result, i.e., our first lemma, is delivered:

Lemma 2.1. {cn} is bounded.

Proof. Let n ∈N. We assume that

n ≡ k (mod m) (1 ≤ k ≤ m).

Since xk−1 ∈ Ak−1 and xk−2 ∈ Ak−2, we have, using (2.1) with ε = 0,

cn = d(xn, x1)
= [d(x1, x2) + d(x2, x3) + · · · + d(xk−2, xk−1)] + d(xk−1, xn)
≤ (k − 2)c2 + d(Txk−2, Txk−1)

≤ (k − 2)c2 +
1
2

[d(xk−1, xk−2) + d(xn, xn−1)]

≤ (k − 2)c2 +
1
2

(c2 + c2)

= (k − 1)c2.

And hence we have our proof.

Remark 2.2. One finds in [1] an attempt to prove the boundedness of an analogous sequence
cn (the notations in play there and in the present article are virtually the same) using the
cyclic contractive condition from its main theorem (vide inequality (2.1) from Theorem 2.4
in [1]) on two points x1 (∈ A1) and xn (∈ An). But this inequality as well as our own (2.1)
can only be applied to points that are members of consecutive sets Ai and Ai+1 for some
i ∈ {1, . . . , m} according to their respective applicative restrictions, both of which stem from
the very definition of cyclical conditions given in [6]. xn being the general n-th term of the
sequence {xn} is in a general set An, and, following the notational convention agreed upon in
both [1] and this article, An = Al, where l ≡ n (mod m) and 1 ≤ l ≤ m. Since the index l need
not either be succeeding or be preceding the index 1 in general, x1 (∈ A1) and xn (∈ Al) need
not necessarily be members of consecutive sets as well. Hence the justifiability of using the
cyclic criterion on them is lost, and suitable adjustments have to be made in the structure
of the proving argument. This is precisely what we have endeavoured to do in our proof
above.

To return to our central domain of discourse, next we need another:

Lemma 2.2. limn→∞ d(xn+1, xn) = 0.
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Proof. (2.2) assures that we end up with a sequence, viz. {d(xn+1, xn)}, that is
both monotonically decreasing and bounded below, and, therefore,

lim
n→∞ d(xn+1, xn) = inf

n∈N d(xn+1, xn)

= r (say)
≥ 0.

But, a quick use of (2.1) shows that,

r ≤ d(xn+1, xn)
= d(Txn, Txn−1)

≤ 1 − ε
2

[d(xn+1, xn) + d(xn, xn−1)] + Λεαψ(ε)(1+ cn+1 + 2cn + cn−1)β

≤ 1 − ε
2

[d(xn+1, xn) + d(xn, xn−1)] + Kεψ(ε)

for some K ≥ 0. (By virtue of Lemma 2.1, it is ensured that K does not depend on
n.) Letting n→∞,

r ≤ 1 − ε
2

(r + r) + Kεψ(ε)

=⇒ r ≤ Kψ(ε), ∀ε ∈ (0, 1]
=⇒ r = 0.

Therefore,
lim
n→∞ d(xn+1, xn) = 0.

With this, we are now in a position to derive:

Lemma 2.3. {xn} is a Cauchy sequence.

Proof. This proof has the same generic character as the one given in [6]. We
suppose, first, that ∃ρ > 0 such that, given any N ∈ N, ∃n > p ≥ N with n − p ≡ 1
(mod m) and

d(xn, xp) ≥ ρ > 0.

Clearly, xn−1 and xp−1 lie in different but consecutively labelled sets Ai and Ai+1 for
some i ∈ {1, . . . , m}. Then, from (2.1), ∀ε ∈ [0, 1],

d(xn, xp) ≤ 1 − ε
2

[d(xn, xn−1) + d(xp, xp−1)]

+Λεαψ(ε)(1 + cn + cn−1 + cp + cp−1)β

≤ 1 − ε
2

[d(xn, xn−1) + d(xp, xp−1)] + Cεαψ(ε),

where, to be precise, C = sup j∈NΛ(1 + 4c j)β < ∞ (on account of Lemma 2.1 again).
If we let n, p→∞ with n − p ≡ 1 (mod m), then Lemma 2.2 gives us that

0 < ρ ≤ d(xn, xp)→ 0



184 M. Chakraborty and S.K. Samanta

as ε→ 0+, which is, clearly contrary to what we had supposed earlier.
Thus we can safely state that, given ε > 0, ∃N ∈N such that

(2.3) d(xn, xp) ≤ ε
m

whenever n, p ≥ N and n − p ≡ 1 (mod m).
Again, by Lemma 2.2 it is possible to choose M ∈N so that

d(xn+1, xn) ≤ ε
m

if n ≥ M. If we now let n, p ≥ max{N, M} with n > p, then ∃r ∈ {1, 2, . . . , m} such
that

n − p ≡ r (mod m).

Thus
n − p + i ≡ 1 (mod m),

where i = m − r + 1. And, bringing into play (2.3),

d(xn, xp) ≤ d(p, xn+i) + [d(xn+i, xn+i−1) + · · · + d(xn+1, xn)]
≤ ε.

This proves that {xn} is Cauchy.
Now, looking at Y =

⋃
i Ai, a complete metric space on its own, we can conclude

straightaway that {xn}, a Cauchy sequence in it, converges to a point y ∈ Y.
But {xn} has infinitely many terms in each Ai, i ∈ {1, . . . , m}, and each Ai is a

closed subset of Y. Therefore,

y ∈ Ai ∀i

=⇒ y ∈
m⋂

i=1

Ai

=⇒
m⋂

i=1

Ai � Ø.

Moreover,
⋂m

i=1 Ai is, just as well, a complete metric space per se. Thus, considering
the restricted mapping

U : = T �⋂Ai :
⋂

Ai →
⋂

Ai,

we notice that it satisfies the criterion to be a Kannan-type generalized map already
proven by us to have a unique fixed point x∗ ∈⋂Ai by virtue of Theorem 1.1.

Remark 2.3. We have to minutely peruse a certain nuance here for rigour’s sake: the
moment we know that

⋂
Ai � Ø, we can choose an arbitrary y1 ∈ ⋂Ai to serve as its zero,

and the restriction of T to
⋂

Ai can still be made to satisfy (a modified form of) (2.1) insofar
as Λ can be appropriately revised as per remark Remark 2.1; this renders the employment
of Theorem 1.1 in the above proof vindicated.
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3. Some Conclusions

Having proved Theorem 2.1, we can now, following the terminology of [15],
actually show something more, viz.:

Corollary 3.1. T is a Picard operator, i.e., T has a unique fixed point x∗ ∈ ⋂m
i=1 Ai, and

the sequence of Picard iterates {Tnx}n∈N converges to x∗ irrespective of our initial choice of
x ∈ Y.

Proof. So far, we have already shown that for a fixed x1 ∈ A1 one and only
one fixed point x∗ of T exists. To complete the proof, let’s first observe that the
decision to let x1 ∈ A1 at the beginning of the main proof was based partly on mere
convention and partly on an intention to develop our argument thenceforth more
or less analogously to the proof given in [1]; if we would have chosen any generic
x ∈ Y instead, then, seeing as how Y =

⋃
Ai, that x would have belonged to Aj

for some j ∈ {1, . . . , m}, and our discussion thereupon would have differed only in
some labellings, not in its conclusion: i.e., we would have, eventually, inferred the
existence of a unique fixed point of T in

⋂
Ai.

Next we want to demonstrate that the limit of the Picard iterates turns out to
be a fixed point of T. To this end we recall that {Tnx1}n∈N = {xn+1}n∈N converges to
y ∈ ⋂Ai. Our claim is that this y itself is a fixed point of T. This we can verify
summarily:

As xn ∈ Ak for some k ∈ {1, . . . , m} and as y ∈ ⋂m
i=1 Ai ⊂ Ak+1,

d(y, Ty) ≤ d(y, xn+1) + d(xn+1, Ty)
= d(y, xn+1) + d(Txn, Ty)

≤ d(y, xn+1) +
1
2

[d(xn+1, xn) + d(y, Ty)]

for every n ∈N (using (2.1) with ε = 0 again), and, from that,

1
2

d(y, Ty) ≤ d(y, xn+1) +
1
2

d(xn+1, xn)

for all n. Letting n→ ∞,
d(y, Ty) = 0

as xn+1 → y and d(xn+1, xn)→ 0. Therefore,

y = Ty.

As observed, the choice of the starting point x1 is irrelevant, and we already
know that x∗ ∈ ⋂Ai is the unique fixed point of T. So obviously,

x∗ = y,

i.e., Tnx1 → x∗ as n→∞.
This completes the proof.
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Remark 3.1. Trying to show their map f (corresponding to the T in the present article)
is a Picard operator, the authors in [1] have set out to prove that xn → x∗ as n → ∞ too.
(Again, apart from denoting the operator differently, we haven’t really changed much of
their notation so as to make a comparison fairly self-explanatory.) The argument they have
used in this follows from a technique given in [10], and they, too, have ended up stating, to
quote a portion of the concerned reasoning in [1] verbatim,

d(xn, x∗) = lim
p→∞ d(xn, xn+p).

This is where a problem arises.

In [10] the convergence of the Cauchy sequence xn is established directly to its limit x∗,
and, therefore, the utilization of an equality like

d(x∗, xn) = lim
m→∞ d(xn+m, xn)

(quoted as it is from [10] this time) is perfectly justified. The cyclical setting in both this
article and [1], however, only ensures initially that xn → y for some y ∈ ⋂Ai as n→∞, and,
as a consequence, guarantees next the existence of a unique fixed point x∗ for the operator.
The fact that this y turns out to be a fixed point for the operator as well (thereby rendering it
equal to the unique x∗) is something that needs to be actually proved in a separate treatment,
which we believe is exactly the task that we’ve accomplished here. [1], though, overlooks
this distinction and assumes the very fact (viz. xn → x∗) it wants to prove in the proof itself,
committing the fallacy of petitio principii.

As a final note, let us remind ourselves of the fact that (1.3) is weaker than (1.1) (see
[2]), and, in light of this we also have, as another corollary to our Theorem 2.1 the
following:

Corollary 3.2. [16, 12] Let {Ai}pi=1 be nonempty closed subsets of a complete metric space
X. Suppose that

T :
p⋃

i=1

Ai →
p⋃

i=1

Ai

is a cyclic map, i.e., it satisfies T(Ai) ⊂ Ai+1 for every i ∈ {1, . . . , p} (with Ap+1 = A1),
such that

d(Tx, Ty) ≤ α
2

[d(x, Tx) + d(y, Ty)]

for all x ∈ Ai, y ∈ Ai+1 (1 ≤ i ≤ p), where α ∈ (0, 1) is a constant. Then T has a unique
fixed point x∗ in

⋂p
i=1 Ai and is a Picard operator.
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