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CHARACTERIZATIONS OF A RIEMANNIAN MANIFOLD ADMITTING
RICCI SOLITIONS

B. Barua and U. C. De

Abstract. The object of the present paper is to characterize a Riemannian manifold ad-
mitting Ricci solitons (g, &, A).

1. Introduction

In 1982 Hamilton [8] introduced the notion of Ricci flow to find a canonical metric
on a smooth manifold. The Ricci flow is an evolution equation for metrics on a
Riemannian manifold:

d

ﬁgij(t) = —2Rjj.
A Ricci soliton [9] is a generalization of the Einstein metric and is defined on a
Riemannian manifold (M, g) by

(1.1) E(ggij + 2Rij + ZAgij =0

for some constant A, a vector field & on M where Rjj is the Ricci tensor. Clearly,
a Ricci soliton with & zero or a Killing vector field [18] reduces to an Einstein
manifold. The Ricci soliton is said to be shrinking, steady and expanding according
as A is negative, zero and positive respectively. Ricci solitons in contact metric
manifolds were studied in ([2], [5], [11], [14]) and many others. Recently, Bejan and
Crasmareanu [1] studied Ricci solitons in a manifold of quasi-constant curvature.
There are two aspects to study Ricci solitons in a Riemannian manifold (M, g).

(i) Given &, to find the nature of M.
(i) Given the properties of R;j, to find the nature of &.

The object of the present paper is to characterize a Riemannian manifold in
respect of R;; when the nature of the vector field & is given.

On the other hand, a Riemannian manifold is said to be a quasi-Einstein mani-
fold [3] if its Ricci tensor is non-zero and satisfies

Rij = agij + bAiAj,
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where a and b are scalars and A; is a unit covariant vector. Such a manifold is
denoted by (QE),. In 2008, De and Gazi [4] introduced the notion of nearly quasi-
Einstein manifolds.

A Riemannian manifold is said to be a nearly quasi-Einstein manifold [4] if its
Ricci tensor is non-zero and satisfies

Rij = agij + bEij,

where Ejj is a symmetric (0,2) tensor. From the definition it follows that every
quasi-Einstein manifold is a nearly quasi-Einstein manifold, but the converse is not
necessarily true.

N. S. Sinyukov [13] and E. N. Sinyukova [12] investigated manifolds whose
Ricci tensor satisfies

(1.2) ViRjk = 0igjk + vigik + Viij,

where ¢; and v; are some covariant vectors. Such manifolds are known under
different names (see [7], [12], [13]). In what follows a Riemannian ( or pseudo-
Riemannian) manifold satisfying (1.2) with non-constant scalar curvature will be
called a Sinyukov manifold. Such manifolds always admit non-trivial geodesic
mappings and every Sinyukov manifold is nearly conformally symmetric.

The paper is organized in the following way.

In Section 2, we prove that if the vector field & is a torseforming vector field,
then the manifold reduces to a nearly quasi-Einstein manifold and the Ricci soliton
is steady under certain condition. As a particular case of a torseforming vector
field we find the nature of the Riemannian manifold and the Ricci solitons. Finally,
we obtain the nature of the Riemannian manifold when & induces infinitesimal
transformations.

2. ¢ asatorseforming vector field

In this section we determine the nature of the Riemannian manifold if the vector
field & is torseforming.

The vector field £ is called a torseforming vector field [17] if
(2.1) Vi&i = pgij + &iwj,

where V denotes covariant differentiation, p is a scalar and wj is a covariant vector.
Using (2.1) we get

Ecgij = V& +Vigj
(2.2) = 2pgij + 2uij,
where .
ij = E(éiwj + &jwi).
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Therefore
£cgij + 2Rij + 2Agi; =0
implies
(2.3) Rij = agij + buij,
where a = —(p + A), b = =1 # 0, which implies that the manifold is a nearly

quasi-Einstein manifold [4]. From (2.3) it follows that
(2.4) r=—(p+A)n—p=—(pn+An+p),
where r is the scalar curvature and p = pjjg'’. From (2.4) we obtain

__r___H
A= - P m

Hence we have the following theorem:

Theorem 2.1. If in a Riemannian manifold admitting Ricci soliton (g, &, A) the vector
field & is torseforming, then the manifold is a nearly quasi-Einstein manifold and the Ricci
soliton is steady provided the value of the scalar curvature is —(pn + ).

Now we consider the following cases:
Case i) Suppose ¢ is a unit torseforming vector field.
Then (2.1) can be written as

(2.5) Vi&i = pl(gij — &i&))-
Then
Ecgij = Vi&i+Vigj
= 2p(gij — &i&))-

Thus £:gij + 2R;j + 2Agi; = 0 implies
(2.6) Rij = —(p + A)gij + p&i&j.

Therefore the manifold becomes a quasi-Einstein manifold.
From (2.6) we get
-R;j&'é = A,
since &; is a unit vector. Thus we can state the following:

Theorem 2.2. If & isaunit torseforming vector field in a Riemannian manifold admitting
Ricci soliton (g, &, ./\). then the manifold bgcpmes a quasi-Einstein manifold _and the Ricci
soliton (g, &, —Rij&'&Y) is shrinking if R;;&'ED is positive or expanding if R;;&'EN < 0.
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Case ii) If w; = 01in (2.1), that is, if &; is a concircular vector field [18], then (2.3)
reduces to
Rij = agij,

where a = —(A + p), which implies that the manifold is an Einstein manifold.
Hence we obtain the following:

Theorem 2.3. If & isa concircular vector field in a Riemannian manifold admitting Ricci
soliton, then the manifold is an Einstein manifold and the Ricci soliton (g, &, —($ + p)) is
steady provided r = —pn.

Case iii) If & is a parallel vector field, then it can be easily seen that the manifold
becomes an Einstein manifold.

3. Infinitesimal transformation induced by &

In this section we determine the nature of the Riemannian manifold M if the vector
field & induces various types of infinitesimal transformations. Recently, Velimirovic
et al. [15] studied infinitesimal rigidity and flexibility of a non-symmetric affine
connection space.

. First suppose that ¢ is a Killing vector [18]. That is, £:gij = 0. Then from (1.1)
it can be easily seen that
Rij = —Aygij,

which implies that M is an Einstein manifold and A = —1. Thus we obtain the
following:

Theorem 3.1. If £ is a Killing vector field, then the manifold is an Einstein manifold and
the Ricci soliton (g, &, —1) is expanding or shrinking accordingas r <0 or r > 0.

I1. Suppose & induces an affine connection. Then V¢£sg;; = 0. [10] which implies
that M is Ricci parallel.

In 1923, Eisenhart [6] proved that if a positive definite Riemannian manifold
(M, g) admits a second order parallel symmetric covariant tensor other than a
constant multiple of the metric tensor, then it is reducible.

Hence we can state the following:

Theorem 3.2. If £ induces an affine connection in (M, g) admitting a Ricci soliton (g, £, A),
then the manifold (M, g) is Ricci parallel and reducible.

I1. If £ is a conformal motion, then we have
(3.1) Eggij = 20‘gij,

where ¢ is ascalar. If ¢ = constant, then the conformal motion is called homothetic.
Suppose ¢ is a homothetic motion. Then from (3.1) it follows that Vi £<gij = 0.
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Hence from (1.1) we get
ViRij = 0.

Thus we get the same conclusion as in Il if £ induces a homothetic motion.
IV. Suppose ¢ is projective collineation. In this case we have [10]

Eg{ h} = 0]¢j + 0 i

1

where ¢ = ¢(x) is a scalar function and ¢; = Vj¢. The commutation formula gives

h h
e Drons 1)
2gijPx + gijPi + gikPi-

ViEegij — £:Vigij

Hence
(3.2) Vikegij = 2ijPx + giiPi + gikPj-
Now from (1.1) we get

Vk£§gij + ZVkRij =0

Using (3.2) in the above equation we get

1 1
3.3) ViRij = ~(wgij + 5 digig + 59igi);

which can be written as V(Rjj = oxgij + vigkj + VjJik,
where gy = —gbk, Vi = —%gf)i.
Equation (3.3) implies that the manifold is a Sinyukov manifold.
Thus we can state the following:

Theorem 3.3. If £ induces a projective collineation in (M, g) admitting a Ricci soliton
then the manifold is a Sinyukov manifold.
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