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CHARACTERIZATIONS OF A RIEMANNIAN MANIFOLD ADMITTING
RICCI SOLITIONS

B. Barua and U. C. De

Abstract. The object of the present paper is to characterize a Riemannian manifold ad-
mitting Ricci solitons (�, ξ, λ).

1. Introduction

In 1982 Hamilton [8] introduced the notion of Ricci flow to find a canonical metric
on a smooth manifold. The Ricci flow is an evolution equation for metrics on a
Riemannian manifold:

∂
∂t
�i j(t) = −2Rij.

A Ricci soliton [9] is a generalization of the Einstein metric and is defined on a
Riemannian manifold (M, �) by

£ξ�i j + 2Rij + 2λ�i j = 0(1.1)

for some constant λ, a vector field ξ on M where Rij is the Ricci tensor. Clearly,
a Ricci soliton with ξ zero or a Killing vector field [18] reduces to an Einstein
manifold. The Ricci soliton is said to be shrinking, steady and expanding according
as λ is negative, zero and positive respectively. Ricci solitons in contact metric
manifolds were studied in ( [2], [5], [11], [14]) and many others. Recently, Bejan and
Crasmareanu [1] studied Ricci solitons in a manifold of quasi-constant curvature.
There are two aspects to study Ricci solitons in a Riemannian manifold (M, �).

(i) Given ξ, to find the nature of M.
(ii) Given the properties of Rij, to find the nature of ξ.
The object of the present paper is to characterize a Riemannian manifold in

respect of Rij when the nature of the vector field ξ is given.
On the other hand, a Riemannian manifold is said to be a quasi-Einstein mani-

fold [3] if its Ricci tensor is non-zero and satisfies

Rij = a�i j + bAiAj,
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where a and b are scalars and Ai is a unit covariant vector. Such a manifold is
denoted by (QE)n. In 2008, De and Gazi [4] introduced the notion of nearly quasi-
Einstein manifolds.

A Riemannian manifold is said to be a nearly quasi-Einstein manifold [4] if its
Ricci tensor is non-zero and satisfies

Rij = a�i j + bEij,

where Eij is a symmetric (0,2) tensor. From the definition it follows that every
quasi-Einstein manifold is a nearly quasi-Einstein manifold, but the converse is not
necessarily true.

N. S. Sinyukov [13] and E. N. Sinyukova [12] investigated manifolds whose
Ricci tensor satisfies

∇iRjk = σi� jk + ν j�ik + νk�i j,(1.2)

where σi and νi are some covariant vectors. Such manifolds are known under
different names (see [7], [12], [13]). In what follows a Riemannian ( or pseudo-
Riemannian) manifold satisfying (1.2) with non-constant scalar curvature will be
called a Sinyukov manifold. Such manifolds always admit non-trivial geodesic
mappings and every Sinyukov manifold is nearly conformally symmetric.

The paper is organized in the following way.

In Section 2, we prove that if the vector field ξ is a torseforming vector field,
then the manifold reduces to a nearly quasi-Einstein manifold and the Ricci soliton
is steady under certain condition. As a particular case of a torseforming vector
field we find the nature of the Riemannian manifold and the Ricci solitons. Finally,
we obtain the nature of the Riemannian manifold when ξ induces infinitesimal
transformations.

2. ξ as a torseforming vector field

In this section we determine the nature of the Riemannian manifold if the vector
field ξ is torseforming.

The vector field ξ is called a torseforming vector field [17] if

∇ jξi = ρ�i j + ξiω j,(2.1)

where ∇ denotes covariant differentiation, ρ is a scalar and ω j is a covariant vector.
Using (2.1) we get

£ξ�i j = ∇ jξi + ∇iξ j

= 2ρ�i j + 2μi j,(2.2)

where

μi j =
1
2

(ξiω j + ξ jωi).
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Therefore
£ξ�i j + 2Rij + 2λ�i j = 0

implies
Rij = a�i j + bμi j,(2.3)

where a = −(ρ + λ), b = −1 � 0, which implies that the manifold is a nearly
quasi-Einstein manifold [4]. From (2.3) it follows that

r = −(ρ + λ)n − μ = −(ρn + λn + μ),(2.4)

where r is the scalar curvature and μ = μi j�
i j. From (2.4) we obtain

λ = − r
n
− ρ − μ

n
.

Hence we have the following theorem:

Theorem 2.1. If in a Riemannian manifold admitting Ricci soliton (�, ξ, λ) the vector
field ξ is torseforming, then the manifold is a nearly quasi-Einstein manifold and the Ricci
soliton is steady provided the value of the scalar curvature is −(ρn + μ).

Now we consider the following cases:

Case i) Suppose ξ is a unit torseforming vector field.

Then (2.1) can be written as

∇ jξi = ρ(�i j − ξiξ j).(2.5)

Then

£ξ�i j = ∇ jξi + ∇iξ j

= 2ρ(�i j − ξiξ j).

Thus £ξ�i j + 2Rij + 2λ�i j = 0 implies

Rij = −(ρ + λ)�i j + ρξiξ j.(2.6)

Therefore the manifold becomes a quasi-Einstein manifold.

From (2.6) we get
−Rijξ

iξ j = λ,

since ξi is a unit vector. Thus we can state the following:

Theorem 2.2. If ξ is a unit torseforming vector field in a Riemannian manifold admitting
Ricci soliton (�, ξ, λ) then the manifold becomes a quasi-Einstein manifold and the Ricci
soliton (�, ξ,−Rijξiξ j) is shrinking if Rijξiξ j is positive or expanding if Rijξiξ j < 0.
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Case ii) If ωi = 0 in (2.1), that is, if ξi is a concircular vector field [18], then (2.3)
reduces to

Rij = a�i j,

where a = −(λ + ρ), which implies that the manifold is an Einstein manifold.
Hence we obtain the following:

Theorem 2.3. If ξ is a concircular vector field in a Riemannian manifold admitting Ricci
soliton, then the manifold is an Einstein manifold and the Ricci soliton (�, ξ,−( r

n + ρ)) is
steady provided r = −ρn.

Case iii) If ξ is a parallel vector field, then it can be easily seen that the manifold
becomes an Einstein manifold.

3. Infinitesimal transformation induced by ξ

In this section we determine the nature of the Riemannian manifold M if the vector
field ξ induces various types of infinitesimal transformations. Recently, Velimirovic
et al. [15] studied infinitesimal rigidity and flexibility of a non-symmetric affine
connection space.

I. First suppose that ξ is a Killing vector [18]. That is, £ξ�i j = 0. Then from (1.1)
it can be easily seen that

Rij = −λ�i j,

which implies that M is an Einstein manifold and λ = − r
n . Thus we obtain the

following:

Theorem 3.1. If ξ is a Killing vector field, then the manifold is an Einstein manifold and
the Ricci soliton (�, ξ,− r

n ) is expanding or shrinking according as r < 0 or r > 0.

II. Suppose ξ induces an affine connection. Then ∇k£ξ�i j = 0. [10] which implies
that M is Ricci parallel.

In 1923, Eisenhart [6] proved that if a positive definite Riemannian manifold
(M, �) admits a second order parallel symmetric covariant tensor other than a
constant multiple of the metric tensor, then it is reducible.

Hence we can state the following:

Theorem 3.2. Ifξ induces an affine connection in (M, �) admitting a Ricci soliton (�, ξ, λ),
then the manifold (M, �) is Ricci parallel and reducible.

III. If ξ is a conformal motion, then we have

£ξ�i j = 2σ�i j,(3.1)

where σ is a scalar. If σ = constant, then the conformal motion is called homothetic.
Suppose ξ is a homothetic motion. Then from (3.1) it follows that ∇k£ξ�i j = 0.
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Hence from (1.1) we get
∇kRij = 0.

Thus we get the same conclusion as in II if ξ induces a homothetic motion.
IV. Suppose ξ is projective collineation. In this case we have [10]

£ξ
{ h

ij

}
= δh

i φ j + δ
h
jφi

where φ = φ(x) is a scalar function and φ j = ∇ jφ. The commutation formula gives

∇k£ξ�i j − £ξ∇k�i j = �hj£ξ
{ h

ik

}
+ �ih£ξ

{ h
jk

}

= 2�i jφk + �kjφi + �ikφ j.

Hence
∇k£ξ�i j = 2�i jφk + �kjφi + �ikφ j.(3.2)

Now from (1.1) we get
∇k£ξ�i j + 2∇kRij = 0

Using (3.2) in the above equation we get

∇kRij = −(φk�i j +
1
2
φi�kj +

1
2
φ j�ik),(3.3)

which can be written as ∇kRij = σk�i j + νi�kj + ν j�ik,

where σk = −φk, νi = − 1
2φi.

Equation (3.3) implies that the manifold is a Sinyukov manifold.
Thus we can state the following:

Theorem 3.3. If ξ induces a projective collineation in (M, �) admitting a Ricci soliton
then the manifold is a Sinyukov manifold.
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