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ON WEAK SYMMETRIES OF KÄHLER-NORDEN MANIFOLDS

Pradip Majhi and U. C. De

Abstract. The aim of the present paper is to study weakly symmetric and weakly Ricci
symmetric Kähler-Norden manifolds.
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1. Introduction

As is well known, symmetric spaces play an important role in differential geometry.
The study of Riemannian symmetric spaces was initiated in the late twenties by
Cartan [4], who, in particular, obtained a classification of those spaces.

Let (M, �) be a Riemannian manifold of dimension n and ∇ be the Levi-Civita
connection of (M, �). A Riemannian manifold is called locally symmetric [4] if∇R =
0, where R is the Riemannian curvature tensor of (M, �). This condition of locally
symmetry is equivalent to the fact that at every point p ∈ M, the local geodesic
symmetry F(p) is an isometry [14]. The class of Riemannian symmetric manifolds
is very natural generalization of the class of manifolds of constant curvature.

During five decades the notion of locally symmetric manifolds have been weak-
ened by many authors in several ways to a different extent such as recurrent man-
ifolds by Walker [29], Ricci recurrent manifolds by Patterson [17], conformally
symmetric manifolds by Chaki and Gupta [7], conformally recurrent manifolds
by Adati and Miyazawa [1], pseudo symmetric manifolds by Chaki [5], weakly
symmetric manifolds by Tamassy and Binh [26], projective symmetric manifolds
by Soós [24] etc.

In 1989, the notions of weakly symmetric manifolds was introduced by Tamássy
and Binh [26]. A non-flat Riemannian manifold (Mn, �) (n > 2) is called weakly
symmetric if the curvature tensor R of type (0, 4) satisfies the condition
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(∇XR)(Y,Z,U,V) = α(X)R(Y,Z,U,V) + β(Y)R(X,Z,U,V)
+ γ(Z)R(Y,X,U,V) + δ(U)R(Y,Z,X,V)
+ ρ(V)R(Y,Z,U,X),(1.1)

for all X, Y, Z, U, V ∈ χ(M) and α, β, γ, δ, ρ are 1-forms called the associated 1-forms
which are not zero simultaneously and ∇ denotes covariant differentiation. Such a
manifold is denoted by (WS)n.

In a subsequent paper, the notion of weakly Ricci symmetric manifolds intro-
duced by Tamássy and Binh [27]. A non-flat Riemannian manifold (Mn, �) is called
weakly Ricci symmetric if the Ricci tensor S of type (0, 2) satisfies the condition

(1.2) (∇XS)(Y,Z) = α(X)S(Y,Z) + β(Y)S(X,Z) + δ(Z)S(Y,X),

where α, β and δ are again 1-forms, not zero simultaneously. Such a manifold
is denoted by (WRS)n.

Weakly symmetric manifolds have been studied by Prvanović ([18], [19]), Binh
[2], Özen and Altay ([15], [16]), De and Bandyopadhyay [10], De [9] and many
others. If in (1.1) the 1-formα is replaced by 2α andρ is equal to α, then the manifold
is called a generalized pseudo symmetric manifold introduced and investigated
by Chaki [6], and if in (1.2) the 1-form α is replaced by 2α, then the manifold
is called a generalized pseudo Ricci symmetric manifold introduced by Chaki
and Koley [8]. So the defining conditions of weakly symmetric and weakly Ricci
symmetric manifolds are a little weaker than the generalized pseudo symmetric
and generalized pseudo Ricci symmetric manifolds.

In [10], De and Bandyopadhyay gave an example of (WS)n and showed that in
(1.1) necessarily γ = β and ρ = δ. So (1.1) takes the form:

(∇XR)(Y,Z,U,V) = α(X)R(Y,Z,U,V) + β(Y)R(X,Z,U,V)
+ β(Z)R(Y,X,U,V)+ δ(U)R(Y,Z,X,V)
+ δ(V)R(Y,Z,U,X).(1.3)

Let A, B and P be the vector fields associated with the 1-formsα, β and δ respectively,
that is, �(X,A) = α(X), �(X,B) = β(X) and �(X,P) = δ(X) for all X. A, B and P
are called the associated vector fields corresponding to the 1-forms α, β and δ
respectively. In [28], Tamássy, De and Binh studied weakly symmetric and weakly
Ricci symmetric Kähler manifolds and in [21] locally conformally Kähler manifolds.
Also Velimirović et al. ([13], [25]) studied generalized Kählerian spaces. The Kähler
manifolds with Norden metric have been studied in ([12], [20], [22], [23]) and many
others. It may be mentioned that in a recent paper [12] Kim et al. proved the
following:
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Theorem 1.1. [12] Every 4-dimensional Kähler-norden manifold is locally symmetric

Hence in our paper we study weakly symmetric and weakly Ricci symmetric
Kähler-Norden manifolds of dimension ≥ 6. The present paper is organized as
follows: After preliminaries in section 3, we study weakly symmetric Kähler-
Norden manifolds of dimension ≥ 6 and prove that a weakly symmetric Kähler-
Norden manifold reduces to the recurrent one. Finally, we consider weakly Ricci
symmetric Kähler-Norden manifolds of dimension ≥ 6 and prove that a weakly
Ricci symmetric Kähler-Norden manifold is Ricci recurrent.

2. Priliminaries

By a Kählerian manifold with Norden metric (Kähler-Norden or, Anti-Kähler in
short) [11] we mean a triple (M, J, �), where M is a connected differentiable manifold
of dimension n = 2m, J is a (1, 1)-tensor field and � is a pseudo-Riemannian metric
on M satisfying the conditions

J2 = −I, �(JX, JY) = −�(X,Y), ∇J = 0

for every X, Y ∈ χ(M) is the Lie algebra of vector fields on M and∇ is the Levi-Civita
connection of �.

Let (M, J, �) be a Kähler-Norden manifold. Since in dimension two such a
manifold is flat, we assume in the sequel that dimM ≥ 4. Let R(X,Y) be the
curvature operator

[∇X,∇Y] − ∇[X,Y]

and let R be the Riemann-Christoffel curvature tensor,

R(X,Y,Z,W) = �(R(X,Y)Z,W).

The Ricci tensor S is defined as

S(X,Y) = trace{Z −→ R(Z,X)Y}.
These tensors have the following properties [3]

(2.1) R(JX, JY) = −R(X,Y), R(JX,Y) = R(X, JY), ∇XJY = J∇XY

S(JY,Z) = trace{X −→ R(JX,Y)Z}, S(JX,Y) = S(JY,X),

S(JX, JY) = −S(X,Y).

Let Q be the Ricci operator. Then we have S(X,Y) = �(QX,Y) and
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QY = −
∑

i

εiR(ei,Y)ei.

In the above and in the sequel, {e1, e2, ..., en} is an orthonormal frame and εi are the
indicators of ei,

εi = �(ei, ei) = ±1.

The scalar curvature r and the ∗-scalar curvature r∗, which are defined as the trace
of Q and JQ respectively.

3. Weakly Symmetric Kähler-Norden Manifolds

In this section we suppose that (Mn, �) is a (WS)n Kähler-Norden manifold. Now
from (2.1) we find

(∇XR)(JY, JZ,U,V) = ∇XR(JY, JZ,U,V) − R(∇XJY, JZ,U,V)
−R(JY,∇XJZ,U,V) − R(JY, JX,∇XU,V)
−R(JY, JZ,U,∇XV).

= ∇XR(JY, JZ,U,V) − R(J∇XY, JZ,U,V)
−R(JY, J∇XZ,U,V) − R(JY, JX,∇XU,V)
−R(JY, JZ,U,∇XV). usin�(2.1)

= −∇XR(Y,Z,U,V) + R(∇XY,Z,U,V)
+R(Y,∇XZ,U,V) + R(Y,X,∇XU,V)
+R(Y,Z,U,∇XV). usin�(2.1)

= −(∇XR)(Y,Z,U,V).(3.1)

Similarly,

(3.2) (∇XR)(Y,Z, JU, JV) = −(∇XR)(Y,Z,U,V).

From (1.3) and (3.1) we have

β(Y)R(X,Z,U,V) + β(Z)R(Y,X,U,V) = −β(JY)R(X, JZ,U,V)
−β(JZ)R(JY,X,U,V).(3.3)

Contracting (3.3) with respect to the pair of arguments Z, U (that is, taking Z = U =
ei into (3.3), multiplying by εi and summing up over i), we have

β(Y)S(X,V)+ �(R(X,Y)V,B) =
∑

i

εiβ(JY)�(R(V, ei)X, Jei)

−
∑

i

εi�(B, Jei)�(R(JY,X)ei,V).(3.4)
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Again contracting (3.4) with respect to the pair of arguments X, V (that is, taking
X = V = ej into (3.4), multiplying by ε j and summing up over j) and using (2.1) we
have

(3.5) β(Y)r − S(Y,B) = −
∑

i

εiβ(JY)S(ei, Jei) + S(JY, JB),

where r is the scalar curvature. Since in a Kähler-Norden manifold

S(JY, JB) = −S(Y,B),

then from (3.5) we get

(3.6) β(Y)r = −β(JY)
∑

i

εiS(ei, Jei).

This implies

(3.7) β(Y)r = −β(JY)r∗,

where r∗ is the trace of JQ.

Similarly the formulas (1.3) and (3.2) yields

(3.8) δ(Y)r = −δ(JY)r∗.

Putting Y = JY in (3.7) we have

(3.9) β(JY)r = β(Y)r∗,

Thus in view of (3.7) and (3.9) we have

β(Y)r2 = −β(JY)rr∗

and
β(JY)r∗r = β(Y)r∗2,

that is,

(3.10) β(Y)(r2 + r∗2) = 0.

Thus if r � 0 and r∗ � 0, then from (3.10) we get β(Y) = 0.

In the similar way, it follows from (3.8) that if r � 0 and r∗ � 0, then δ(Y) = 0.

Using β(Y) = 0 and δ(Y) = 0 in (1.3) we have

(3.11) (∇XR)(Y,Z,U,V) = α(X)R(Y,Z,U,V),

that is, the weakly symmetric Kähler-Norden manifold reduces to recurrent one.
Therefore we can state the following:
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Theorem 3.1. The weakly symmetric Kähler-Norden manifold of dimension ≥ 6, with
non-zero scalar curvature and non-zero ∗-scalar curvature reduces to recurrent one.

Suppose r∗ = 0. Therefore r = 0. Again from (1.3) we have

(∇XS)(Y,V) = α(X)S(Y,V) + β(Y)S(X,V)+ β(R(X,Y)V)
+ δ(R(X,V)Y) + δ(V)S(X,Y).(3.12)

Contracting (3.12) with respect to the pair of arguments Y, V (that is, taking Y =
V = ei into (3.12), multiplying by εi and summing up over i), we have

(3.13) X(r) = α(X)r + 2S(X,B) + 2S(X,P).

Since r = 0, therefore from (3.13) we have

(3.14) 2S(X,B) + 2S(X,P) = 0,

that is,

(3.15) S(X,B + P) = 0,

which shows that B+P is the eigenvector of the Ricci tensor S corresponding to the
eigenvalue zero. Therefore we can state the following:

Theorem 3.2. In a weakly symmetric Kähler-Norden manifold of dimension ≥ 6, B+P is
the eigenvector of the Ricci tensor S corresponding to the eigenvalue zero provided r∗ = 0.

4. Weakly Ricci Symmetric Kähler-Norden Manifolds

In this section we suppose that the Kähler-Norden manifold is a (WRS)n, that is,

(4.1) (∇XS)(Y,Z) = α(X)S(Y,Z) + β(Y)S(X,Z) + δ(Z)S(Y,X).

We know that

(4.2) (∇XS)(JY, JZ) = −(∇XS)(Y,Z).

From (4.1) and (4.2) we have

(4.3) − β(Y)S(X,Z) − δ(Z)S(Y,X) = β(JY)S(X, JY)+ δ(JZ)S(JY,X).

Contracting (4.3) with respect to the pair of arguments X,Z (that is, taking X = Z = ei

into (4.3), multiplying by εi and summing up over i), we have

(4.4) β(Y)r = −β(JY)r∗.

Similarly, contracting (4.3) with respect to the pair of arguments X, Y we get

(4.5) δ(Z)r = −δ(JZ)r∗.
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Putting Y = JY in (4.4) we have

(4.6) β(JY)r = β(Y)r∗,

Thus, in view of (4.4) and (4.6), we have

β(Y)r2 = −β(JY)rr∗

and
β(JY)r∗r = β(Y)r∗2,

that is,

(4.7) β(Y)(r2 + r∗2) = 0.

Thus if r � 0 and r∗ � 0, then from (4.7) we get β(Y) = 0.

In the similar way, it follows from (4.5) that if r � 0 and r∗ � 0, then δ(Y) = 0.
Using β(Y) = 0 and δ(Y) = 0 in (1.2) we have

(4.8) (∇XS)(Y,Z) = α(X)S(Y,Z),

that is, the weakly Ricci symmetric Kähler-Norden manifold reduces to Ricci re-
current one. Therefore we can state the following:

Theorem 4.1. The weakly Ricci symmetric Kähler-Norden manifold of dimension ≥ 6,
with non-zero scalar curvature and non-zero ∗-scalar curvature reduces to Ricci recurrent
one.

Suppose r∗ = 0. Therefore from (4.4) we obtain r = 0.

Contracting (4.1) with respect to the pair of arguments Y, Z (that is, taking
Y = Z = ei into (4.1), multiplying by εi and summing up over i), we have

(4.9) X(r) = α(X)r + S(X,B) + S(X,P).

Again contracting (4.1) with respect to the pair of arguments X, Z (that is, taking
X = Z = ei into (4.1), multiplying by εi and summing up over i), we get

(4.10)
1
2

Y(r) = S(Y,A) + β(Y)r + S(Y,P).

Similarly by contracting X,Y we obtain

(4.11)
1
2

Z(r) = S(Z,A) + S(Z,B) + δ(Z)r.

Since r = 0, we have from (4.9), (4.10), (4.11) we have

(4.12) S(X,A + B + P) = 0.

Thus A + B + P is the eigenvector of the Ricci tensor S corresponding to the
eigenvalue zero. Therefore we can state the following:
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Theorem 4.2. In a weakly Ricci symmetric Kähler-Norden manifold of dimension ≥ 6,
A + B + P is the eigenvector of the Ricci tensor S corresponding to the eigenvalue zero
provided r∗ = 0.

Now we consider 4-dimensional weakly Ricci symmetric Kähler-Norden mani-
folds. Since every 4-dimensional Kähler-Norden manifold is Einstein [12], therefore

(4.13) S(X,Y) = λ�(X,Y),

where λ is a non-zero constant and λ = r
4 . From (4.9), (4.10) and (4.11) we have

(4.14) 2X(r) = r{α(X) + β(X) + δ(X)} + 2{S(X,A) + S(X,B) + S(X,P)}.
Using (4.13) and then λ = r

4 in (4.14) we have

(4.15) X(r) =
3r
4

(α(X) + β(X) + δ(X)).

Since every 4-dimensional Kähler-Norden manifold is Einstein [12], therefore the
scalar curvature is non-zero constant. Hence (4.15) becomes

(4.16) α(X) + β(X) + δ(X) = 0.

Thus we can state the following:

Corollary 4.1. In a 4-dimensional weakly Ricci symmetric Kähler-Norden manifold the
sum of the associated 1-forms is zero.

R E F E R E N C E S

1. T. Adati and T. Miyazawa: On a Riemannian space with recurrent conformal curvature,
Tensor N. S. 18(1967), 348-354.

2. T. Q. Binh: On weakly symmetric Riemannian spaces, Publ. Math. Debrecen, 42(1993),
103-107.

3. A. Borowiec, M. Francaviglia and I. Volovich: Anti-Kählerian manifolds, Diff.
Geom. Appl. 12(2000), 281-289.

4. E. Cartan: Sur une classe remarqable d’ espaces de Riemannian, Bull. Soc. Math. France.,
54(1962), 214-264.

5. M. C. Chaki: On pseudo symmetric manifolds, An. Stiint. Univ. ”Al. I. Cuza” Iasi
33(1987), 53-58.

6. M. C. Chaki: On generalized pseudo symmetric manifolds, Publ. Math. Debrecen,
45(1994), 305-312.

7. M. C. Chaki and B. Gupta: On conformally symmetric spaces, Indian J. Math. 5(1963),
113-295.

8. M. C. Chaki and S. Koley: On generalized pseudo Ricci symmetric manifolds, Periodica
Math. Hung., 28(1994), 123-129.



On Weak Symmetries of Kähler-Norden Manifolds 105

9. U. C. De: On weakly symmetric structures on a Riemannain manifold, Facta Universi-
tatis, Series: Mechanics, Automatic Control and Robotics 3(14)(2003), 805 - 819.

10. U. C. De and S. Bandyopadhyay: On weakly symmetric spaces, Publ. Math. Debrecen,
54(1999), 377-381.

11. G. T. Ganchev and A. V. Borisov: Note on the almost complex manifolds with Norden
metric, Compt. Rend. Acad. Bulg. Sci. 39(1986), 31-34.

12. H. Kim and J. Kim: 4-dimensional Anti-Kähler manifolds, Acta Math. Hungar,
104(2004), 265-269.
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mappings of generalized Kählerian spaces, Mat. Vesnik, 54(2002), 195-202.
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27. L. Tamássy and T. Q. Binh: On weak symmetries of Einstein and Sasakian manifolds,
Tensor N. S., 53(1993), 140-148.
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