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FIELD EXTENSION AND DESIGNING A NEW 2 × 2 FULL-DIVERSITY,
FULL-RATE AND INFORMATION LOSSLESS SPACE-TIME BLOCK CODE ∗

Sadegh Tofigh, Alireza Morsali, Mohammad Askarizade
and Hossein Momenaee Kermani

Abstract. Based on field extensions we propose a novel aspect for designing linear dis-
persion space-time block codes (STBCs). The proposed code achieves the maximum
attainable diversity. This code is also full-rate and proved to be information lossless.
The simulation results also show that the proposed scheme outperforms the Golden code
when BPSK constellation is utilized.
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1. Introduction

Digital wireless communication is an inseparable part of nowadays life. Achieving
a high rate reliable data transmission is the main goal and many works have been
done on different parts of a digital wireless communication system. As the bit
rate increases, the characteristics of the channel change. As the time period of
each symbol becomes shorter, the wideband and the narrowband fading grows.
In a fading channel, transmitter has to use decades of dBs more than the case of
simple additive white Gaussian noise (AWGN) channel in order to achieve the
same performance. Obviously, the bit error rate in a digital communication system
with AWGN depends on the mean distance of symbols. But, when we have fading
in the channel, as an extreme upper bound, we could assume that symbols of the
constellation are multiplied by a random number. Therefore, the mean distances
of the symbols change. For instance, one can experimentally show that for a binary
phase shift keying (BPSK) modulation, the mean distance is 2, but in a Rayleigh
fading channel the mean distance would be approximately 1.2, as the mean of the
coefficients is 0.62. In other words, when there is a deep fade, power of the noise
would be comparable to power of the signal, and therefore detector would easily
make mistakes.
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The solution to the fading effect of the channel is suggested to be diversity. The
simplest definition by means of diversity is to have different replicas of signal at the
receiver, and then as a result one can choose the best copy of the transmitted signal
with highest SNR. To be more accurate the aim of this technique is to provide a signal
with a fading coefficient, which has a desirable distribution. For instance, using
maximal combining ratio would provide a Rayleigh coefficient for the transmitted
signal with a larger mean, than the fading coefficients of the channel [3].
Multi antenna is the implementation of space diversity. That is, using multiple
antennas at the receiver provides diversity gain and also could achieve the array
gain which means higher signal to noise ratio compared to single antenna.

Using multiple antennas at the transmitter individually is not useful unlike
receiver diversity [2]. In order to take the advantage of multi antenna at the
transmitter one should also take time slots into account. For example in a multi-
input single-output (MISO) system with two transmit antennas and two time slots,
one can simply transmit one symbol with first antenna at the first time slot, and can
use the second time slot and antenna to transmit the same symbol. This technique
could outperform the performance of a fading channel at high SNRs, which is the
technical definition of the diversity gain [15]. Obviously, sending no data with any
of antennas in each time slot is not reasonable and loses the rate. Therefore, many
works have been done in this area so far. The code presented in [12], also known as
its designer Alamouti, is a space-time block code (STBC) whose rate is one symbol
per channel use with linear complexity optimum decoder. The general forms of
structure used in the Alamouti code are discussed in [14, 10], known as Orthogonal
STBCs (OSTBCs). OSTBCs have linear decoders, but they have limited and low
rates. Quasi-Orthogonal STBCs solve the problem of the low-rate property of the
OSTBCs in the expense of Maximum-likelihood (ML) decoding [7]. References
[9, 16] also introduce linear codes but their optimum performance is attained by
using a large number of antennas.

Linear dispersion (LD) STBCs is the next generation of STBCs [6]. LD STBCs
are defined as the matrix

X =
K∑

k=1

Aksk +

K∑
k=1

Bks∗k,

where K is the number of symbols; s = [s1, s2, · · · , sk]T denotes a K×1 symbol vector;
and Ak, Bk are M × T matrices [6]. These codes provide superior performance and
useful properties, some of them will be discussed in next sections. There are many
LD codes proposed in the literature [11, 13]. In this paper, we use a new method to
design an information lossless full-rate STBCs with high coding gain and maximum
achievable diversity.

The rest of this paper is organized as follows: In the next section, system model
used in STBCs is described. Mathematical backgrounds for code construction and
its properties are provided in section 3. In section 4, we propose a novel STBC and
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prove its advantages. Section 5 contains the simulation results, and finally in the
last section the conclusions of the paper is presented.

2. System Formulation

Consider a multi-input multi-output (MIMO) system with M transmit antennas
and N receive antennas which sends data simultaneously within each of T time
slots. The received signal at the jth receive antenna ( j = 1, 2, · · · ,N), during the tth

time slot (t = 1, 2, · · · ,T) is given by:

(2.1) yt
j =

M∑
i=1

ct
ih

t
i, j +N t

j

Where ct
i is the symbol transmitted from ith the transmit antenna during tth

time period, and ht
i, j is the channel fading coefficient of the path between transmit

antenna i and receive antenna j within time slot t. Where ht
i, js are independent of

t, in other words when

ht
i, j = hi, j, ∀t = 1, 2, · · · ,T

the channel is called quasi-static. It means that the fading coefficient of each path
stays constant for at least one block of STBC.

The design criteria of STBCs for quasi-static channels are provided in [15]. In
this case, formula 2.1 can be expressed in matrix form as :

(2.2) Y = HX +W

Where Y is the N × T received matrix, H is the N ×M channel matrix, W is the
N × T additive noise matrix and X is the M × T matrix of a STBC associated with
each information symbol vector s. In family of LD codes, X could be presented by
M×T matrices Ak and Bk for k = 1, 2, · · ·K, where K is the number of symbols coded
in each codeword of STBC. The relation of vector s = (s1, s2, · · · , sK) , where si’s are
taken from a given constellation and the matrices Ak, Bk and X is:

(2.3) X =
K∑

k=1

Aksk +

K∑
k=1

Bks∗k

Where (.)∗ denotes the complex conjugate.
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3. Mathematical Bases

Before introducing the code structure, some mathematical backgrounds are pro-
vided below.

Definition 3.1. A field F is said to be an extension of field K provided that K is a
subfield of F. Let K be an arbitrary field. If there exists a least positive integer n
such that na = 0 for all a ∈ K, then K is said to have characteristic n. If no such
n exists K is said to have characteristic zero (The characteristic of is denoted by
char(K)). Let F be an extension field of K. An element u of F is said to be algebraic
over K provided that u is a root of some nonzero polynomial f ∈ K[x].

Let K be a field and f ∈ K[x] a polynomial of degree n. An extension field f
of K is said to be a splitting field over K of the polynomial f if f splits in F[x] and
F = K(u1, u2, · · · , un) where u1, u2, · · · , un are the roots of f in F.

A splitting field F over a field K of xn − 1K is called a cyclomatic extension of
order n. If F is an extension field of K then F is a vector space over K. Throughout
this paper the dimension of the K-vector space F will be denoted by [F : K].

Example 3.1. [Q(i) : Q] = 2 and {1, i} is the basis of vector space Q(i) over Q.

Theorem 3.1. Let F be an extension field of E and E an extension field of K. Then
[F : K] = [F : E][E : K] [5].

Theorem 3.2. If F is an extension field of K and u ∈ F is algebraic over K and

[K(u) : K] = n

then {1K, u, u2, · · · , un−1} is a basis of the vector space K(u) over K and so u is not the root
of any nonzero polynomial in K[x] of degree less than n. [5]

Theorem 3.3. Let n be a positive integer, K a field such char(K) that does not divide n
and F a cyclomatic extension of K of order n then F = K(ζ), where ζ ∈ F is a primitive nth
root of unity [5].

Definition 3.2. The nth cyclotomic polynomial, for any positive integer n is the
monic polynomial

Φn(x) =
∏

w

(x − w),

where the product is over all nth primitive roots of unity w in an algebraically
closed field.

Theorem 3.4. The nth cyclotomic polynomial Φn is a polynomial in Q[x] and is an
irreducible polynomial over Q [4].
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Theorem 3.5. Suppose that p is a prime number. Then

Φp(x) =
p−1∑
i=1

xi

and so deg(Φp) = p − 1 [4].

Now we introduce our main theorem that it’s Proof is easy and direct by previ-
ous theorems and definitions.

Theorem 3.6. For every positive integer n there exists a cyclomatic extension F of order
m > n of the field Q(i) such that [F : Q(i)] � n and F = Q(i, ζ) where ζ = eiθ.

Corollary 3.1. For every positive integer n there is a real number ζ = eiθ such that ζ is
not the root of any nonzero polynomial in Z(i)[x] of degree less than n.

4. STBCs Design Based on Field Extension

4.1. Construction of the Proposed STBC

In this section we propose an information lossless full-rate, full-diversity STBC as
follows:

(4.1) C = 1√
2

(
s1 + ϕ2s3 ϕs2 + ϕ3s4

−ϕs2 + ϕ3s4 s1 − ϕ2s3

)
,

where s = (s1, s2, s3, s4) are the symbol vector taken from a given constellation (QAM
or PSK) and the scalarϕ = eiθ is not the root of any nonzero polynomial in Z(i)[x]
of degree less than 7.

4.2. The Diversity Order and the Coding Gain of the Proposed STBC

4.2.1. Diversity Order

It is well-known that an STBC is full diversity if for any two different code words
C and Ĉ in the code book, Δ = C − Ĉ be a full-rank matrix [3]. For a full-diversity
STBC, coding gain is defined as the minimum determinant of A for any two distinct
codewords where

(4.2) A = ΔHΔ.

As a consequence, if the minimum determinant of matrix A for any two distinct
codewords is nonzero, the STBC benefits from the full-diversity property.
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Table 4.1: The optimum values of parameter ϕ.

Step 0.1 0.01 0.001 0.0001
4 −QAM CG 1.751 1.751 1.751 1.7942

θ 5.9210 4.0790 4.079 6.0795
BPSK CG 8 8 8 8

θ 2.8010 0.1710 0.1670 4.2100

In order to prove that the proposed code in equation 4.1 is full-diversity, we
show that minimum determinant of matrix A for each pair of different codewords
is not zero.

According to 4.1, we can write det(A) for our proposed code as

det(ΔHΔ) = | det(Δ) |2

=
1
4
| ω2

1 + ϕ
2ω2

2 − ϕ4ω2
3 − ϕ6ω2

4 |2,

where ωi = si − ŝi, i = 1, 2, 3, 4 and si, ŝi are the ith symbol of C and Ĉ respectively
taken from a given constellation. Based on Corollary 3.1, we can choose φ such
that it is not the root of any nonzero polynomial in Z(i)[x] of degree less than
7. For every nonzero vector (ω2

1, ω
2
2, ω

2
3, ω

2
4) ∈ Z(i)4, det(ΔHΔ) is the value of a

nonzero polynomial in of degree 6 in and so it is not zero. Therefore, the newly
proposed STBC is full-diversity over any constellation that is a subspace of Z(i)
(like M-QAM).

4.2.2. Coding gain

In order to obtain the best performance of the code, we must find the value of
which φ maximize the coding gain. By numerical search, we found the optimal
values of φ presented in Tabel4.1.

4.3. Information losslessness

It is known that the STBC X is information lossless if the capacity of the new
precoded channel, H obtained by considering the STBC as a part of the channel,
has the same capacity as the original channel H. The difference between the
capacities of the new and the original channels represents the information loss of
the STBC.

From [1], we have the following theorem for a full-rate STBC to be information
lossless:

Theorem 4.1. Let K = NtT (the STBC is full-rate). then, subject to the power constraint
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(4.3)
K∑

k=1

tr(AkAH
k + BkBH

k ) = NtT

The LD-STBC is information lossless if and only if the matrix F is unitary, where

(4.4) F =
( A B
B∗ A∗

)

and

A = [vecA1, vecA2, · · · , vecAK],
B = [vecB1, vecB2, · · · , vecBK].

where vec(.) is operator stacking all columns of a matrix on top of each other and (.)∗ is
complex conjugate and (.)H is the conjugate and transpose of a matrix.

In our STBC, we haveB = 0 and so it is enough to show that matrixA is unitary.
It is easy to see that

(4.5) AC = 1√
2

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
1 0 ϕ2 0
0 −ϕ 0 ϕ3

0 ϕ 0 ϕ3

1 0 −ϕ2 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
is a unitary matrix and, therefore, based on Theorem 4.1, our STBC is informa-

tion lossless.

5. Simulation Results

Simulation results are presented in Figure5.1 for BPSK modulation. The optimum
ML is used for detection. The number of receive antennas is two. The parameterϕ
is taken to be 4.21 as the optimum value of TABLE 4.1 for 1bit/sec/Hz bandwidth
efficiency.

In what follows, we compare the performance of our proposed STBC with those
of the Golden code and the code proposed in [11].

The Golden code is a 2 × 2 linear dispersion algebraic space-time code with
non-vanishing determinants [8].

X =
1√
5

(
α(a + bθ) α(c + dθ)
γᾱ(c + dθ̄) ᾱ(a + bθ̄)

)
, a, b, c, d ∈ Z[i],
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Fig. 5.1: BER versus SNR for the quasi-static channel, BPSK constellation
(bit/sec/Hz)

where

θ =
1 +
√

5
2
, ᾱ = 1 + i(1 − θ̄), θ̄ = 1 − θ = 1 − √5

2
, γ = eiϕ ∈ C.

The code proposed in [11] has the following structure:

(5.1) B2,ϕ =
1√
2

(
s1 + ϕs2 θ(s3 + ϕs4)
θ(s3 − ϕs4) s1 − ϕs2

)

where θ2 = ϕ and ϕ = eiγ and γ = 1
2 is optimum value of γ.

As Figure 5.1 shows, the proposed code outperforms the Golden code and has
a superior performance than code in B2,ϕ.

6. Conclusion

In this paper, we constructed a novel 2×2 STBC with a new algebraic point of view.
This code is full rate. The proposed code is also full diversity and information
lossless.
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