
FACTA UNIVERSITATIS (NIŠ)
Ser. Math. Inform. Vol. 28 No 1 (2013), 75–86

SIMPLIFICATIONS OF RATIONAL MATRICES BY USING UML∗

Milan B. Tasić, Ivan P. Stanimirović

Abstract. The simplification process on rational matrices consists of simplifying each
entry represented by a rational function. We follow the classic approach of dividing
the numerator and denominator polynomials by their common GCD polynomial, and
provide the activity diagram in UML for this process. A rational matrix representation
as the quotient of a polynomial matrix and a polynomial is also discussed here and
illustrated via activity diagrams. Also, a class diagram giving the links between the class
of rational matrices and the classes of rational functions and polynomials is obtained.

Keywords: UML, rational matrix, simplification, activity diagrams, class diagrams, Vi-
sual C++.

1. Introduction

Rational (polynomial) matrix is the matrix consisting of entries being rational func-
tions (polynomials). Therefore, rational matrices are the generalization of polyno-
mial ones. These are a mathematical tool often used for dynamical systems. Fur-
thermore, polynomial matrices can be used for advanced controller design and in
some signal processing applications. Matrix decompositions are often considered
in many applications, such as finding matrix inverses and generalized inverses
[2]. Decomposition of a polynomial matrix is frequently observed to evaluate
polynomial generalized inverses, as explained in [3, 5]. Also, some well-known
polynomial algorithms of computer algebra are provided in [11].

The Unified Modeling Language (UML) is a graphical language for visualizing,
specifying and constructing classes of software intensive systems [1]. UML is
the unification of a series of efforts to build notations for expressing models of
Object Oriented Analysis and Design (OOAD), and therefore, UML represents the
standard for Object Oriented modeling.

Received September 21, 2012.; Accepted February 17, 2013.
2010 Mathematics Subject Classification. Primary 65F30; Secondary 68N15
∗The authors were supported in part by research project 174013 of the Serbian Ministry of Education and
Science

75

76 M. B. Tasić, I. P. Stanimirović

The standard definition of Object Oriented Analysis (OOA) implies developing
requirements and specifications expressed as an object model (population of inter-
acting objects) of a system, as opposed to the traditional data or functional views.
OOA is a discovery process which clarifies and documents the requirements of a
system and focuses on understanding the problem domain. Significantly, it discov-
ers and documents the key problem domain classes, concerned with developing
an object-oriented model of the problem domain. The identified objects reflect the
entities that are associated with the problem to be solved.

Object Oriented Design (OOD) definition is concerned with developing object-
oriented models of a software/system to implement the requirements identified
during OOA. It creates abstractions and mechanisms necessary to meet behavioral
requirements determined during analysis. Therefore, OOD provides an object-
oriented model of a software system to implement the identified requirements.

Notice that in UML a class (as the structural element) represents a description of
a set of objects that share the same attributes, operations and relations. Classes are
usually graphically rendered as rectangles often including class names, attributes
and operations. Interface is a collection of operations that specifies a service of
a class. It describes the externally visible behavior of a class and defines a set
of operations (but not their implementations). Usually, interfaces are graphically
represented as a circle with a name below. Use Case is the structural element that
provides the description of a sequence of actions that a system performs to deliver
an observable result to a particular actor and is used to structure the behavioral
elements in a model. Use Cases are graphically depicted as ellipses drawn with a
solid line.

The most famous concept of UML is the diagram. Diagrams are graph rep-
resentations of a set of elements and relationships with the nodes being elements
and the edges being relationships. They are the projections of systems and can
visualize a system from various perspectives. UML is characterized by nine major
diagrams: 1) class; 2) object; 3) use case; 4) sequence; 5) collaboration; 6) statechart;
7) activity; 8) component; 9) deployment.

Many algorithms involving the processing of rational matrices and their sim-
plifications were introduced. The algorithm generating the full-rank LDL∗ fac-
torization of a polynomial Hermitian matrix was presented in [6]. Therefore, the
simplification procedure is performed on the entries of rational matrices L and D,
which are obtained. Two methods for the computation of A(2)

T,S inverses of a given
polynomial matrix A are derived in [6, 7]. These methods use the full-rank de-
composition procedures (LDL∗ and QDR decomposition), and Algorithm 3.2 from
[10] to compute the inverse of a polynomial matrix. Notice that, in order to apply
Algorithm 3.2 from [10] to a rational matrix, one needs to transform it to the form
involving the quotient of a polynomial matrix and a polynomial, in which case
the polynomial acts as a constant in the evaluation of the inverse matrix. Also,
a method based on the LDL∗ factorization of matrix product A∗A, for symbolic
computation of Moore-Penrose inverse matrix is developed in [9]. Some imple-
mentation methods of algorithms including polynomial matrices in MATHEMATICA

Simplifications of Rational Matrices by Using UML 77

were derived in [8].

Example 1.1. In the paper [6] the following matrix entry was encountered:

a(x) =
x5 − 11x4 + 30x3 + 22x2 − 95x − 75

x4 + 2x3 − 24x2 − 50x − 25
.

Due to the simplification that was carried out, their greatest common divisor (GCD)
was obtained as:

GCD(x) = (x + 1)2 · (x − 5),

and therefore, the simplified entry is

a(x) =
x2 − 8x + 15

x + 5
.

This example shows how crucial the simplification is, because of the high storage
requirements and low performances when dealing with non-simplified intermedi-
ate results. Therefore, we implemented this simplification process in Visual C++
to provide a graphical interface and for demonstration purposes (see Figure 7.1 in
Appendix).

Our main motivation is to demonstrate the simplification procedures used on
rational matrices in the above mentioned algorithms. This demonstration is due to
the diagrams in UML, which will later provide a good basis for the implementa-
tions. Also, a goal is to identify the role of each UML diagram (use cases, statecharts
and activity diagrams) in the performance process under an object-oriented per-
spective. The final objective is to obtain a set of annotated UML diagrams that
should be the input to create a performance model (in terms of some performance
modeling paradigm).

Our goal is to use UML to develop a model of the class of rational matrices. The
benefits of applying UML on such complex class types are numerous. Notice that
UML provides views for development and deployment, and it is process-indepen-
dent. UML is highly suitable for use with the processes that are iterative and incre-
mental. Therefore, the class of rational matrices and methods for rational matrix
manipulations can be modeled in UML. Also, UML provides an expressive, visual
modeling language for developing meaningful models. UML’s main character-
istic is it supports specifications that are independent of particular programming
languages and development processes, and provides a basis for understanding
specification languages.

The rest of the paper is organized as follows. In the second section a class dia-
gram of the class of rational matrices is provided, also illustrating the correlations
with the classes of rational functions and polynomials. In the third section the
use-case diagram is depicted showing the position of the simplification procedures
in the algorithm evaluation. Some activity diagrams are given in the fourth sec-
tion determining some simplification procedures for rational matrices. Illustrative
examples are provided in the fifth section in order to demonstrate simplification
techniques. In appendix we give the partial C++ code for the simplification func-
tion on the class of rational functions.

78 M. B. Tasić, I. P. Stanimirović

2. Class diagrams

The most widely used diagram of UML is the class diagram. It is used to model
the static design view of a system and to specify the structure, interfaces and
relationships between classes that underlie the system architecture. Class diagram
stands as the primary diagram for generating codes from UML models.

The purpose of a class diagram is to depict the classes within a model. In an
object oriented application, classes have attributes (member variables), operations
(member functions) and relations with other classes. The UML class diagram can
depict all these things quite easily.

First, notice that the class of rational matrices requires the class of rational
functions, because the entries of a rational matrix are given in the form of rational
functions. Then, since any rational function is a quotient of two polynomials, the
class Polynomial should be written as the basic class, along with the class of rational
numbers for the coefficients of the polynomials.

Fig. 2.1: An overview of the application model for three classes: Polynomial, Ratio-
nalFunction and RationalMatrix.

Simplifications of Rational Matrices by Using UML 79

3. Use case diagram

In UML a use case diagram shows actors and use cases together with their relation-
ships. The relationships are associations between the actors and the use cases, gen-
eralizations between the actors, and generalizations, extends and includes among
the use cases [4].

A use case represents a coherent unit of functionality provided by a system, a
subsystem or a class as manifested by sequences of messages exchanged among the
system (subsystem, class) and one or more actors together with actions performed
by the system (subsystem, class). The use cases may optionally be enclosed by a
rectangle that represents the boundary of the containing system or classifier [4].

Fig. 3.1: Use-Case diagram of the rational functions algorithm including matrix
simplification.

On the diagram in Figure 3.1 we obtain the role of a software developer in
order to apply some of the algorithms on rational matrices. A main task is to apply
the simplification process correctly, when needed. A condition for the stopping of
the process is the iteration error (in a small number of cases) or the ending of the
evaluation process (i, j equal to the dimension of the initial matrix).

80 M. B. Tasić, I. P. Stanimirović

4. Activity diagrams

Activity diagram provides visual descriptions of the system execution and the flow
of activities. These diagrams focus on the activities that are performed and who
(or what) is responsible for the performance of those activities.

The elements of an activity diagram are action nodes, control nodes, and object
nodes. There are three types of control nodes: initial and final (final nodes have
two varieties, activity final and flow final), decision and merge, and fork and join.

Actions are the elemental unit of behavior in an activity diagram. Activities can
contain many actions which are what activity diagrams depict.

In the paper [6] the algorithm generating the full-rank LDL∗ factorization of
a polynomial Hermitian matrix was presented. Although the observed matrix
is polynomial, the resulting matrices L and D are rational, for the general case.
Therefore, explicit formulaes for the evaluation of the coefficients of the entries
of rational matrices L and D are obtained. In [6] we created a module for testing
and verification purposes, in MATHEMATICA. The implementation was easily
done since MATHEMATICA is the package for symbolic computations and has
built-functions for manipulations with the expressions. The function Simplify[]
performs a sequence of algebraic and other transformations on a given expres-
sion and returns the simplest form it finds [12]. Of course, one needs to tackle
the problem of rational matrix simplification when implementing in procedural
programming languages.

The most crucial simplification process on rational matrices is to simplify each
entry determined by some rational function. The classic approach to rational
function simplification is to evaluate the GCD of numerator and denominator
polynomials and then divide these polynomials by the GCD. Also, for the case
when the denominator is the constant c � 1, the divisions of the numerator and
denominator by c are also carried out.

Therefore, the simplification process for rational functions can be expressed
through the following activity diagram in UML, represented on figure 4.1.

Simplifications of Rational Matrices by Using UML 81

Fig. 4.1: Activity diagram of the simplification function for rational functions.

In papers [6] and [9] emerged the need to represent a rational matrix M of the
unknown x to the form:

(4.1) M =
1

p(x)
M1,

where p(x) is a polynomial and M1 is the polynomial matrix of the unknown
x. Specifically, Algorithm 3.1 from [9] and Algorithm 3.3 from [6] require these
representations in order to apply the algorithm for the evaluation of the inverse
matrix of the polynomial matrix M1 (therefore, M−1 = p(x) ·M−1

1).
An obvious way of generating the representation (4.1) is to evaluate the Least

Common Multiple (LCM) of all denominator polynomials occurring in the matrix
M and to set p(x) = LCM. Then, a simple multiplication of each numerator polyno-
mial by the LCM divided by the appropriate denominator, is done. The resulting
polynomial matrix M1 consists of these newly generated polynomials.

82 M. B. Tasić, I. P. Stanimirović

Fig. 4.2: Activity diagram for representation (4.1) of a rational matrix.

5. Numerical examples

The following example demonstrates the crucial element of rational matrix simpli-
fication used in [6].

Example 5.1. Consider the full-rank LDL∗ decomposition of the matrix:

S3 =

⎡⎢⎢⎢⎢⎢⎢⎣
1 + x x 1 + x

x −1 + x x
1 + x x 1 + x

⎤⎥⎥⎥⎥⎥⎥⎦ .
The matrices L and D are therefore given by

L =

⎡⎢⎢⎢⎢⎢⎢⎣
1 0
x

1+x 1
1 0

⎤⎥⎥⎥⎥⎥⎥⎦ , D =
[

1 + x 0
0 −1 + x − x2

1+x

]
.

The simplification of the rational matrix D involves the crucial simplification of the
rational function

D2,2(x) = −1 + x − x2

1 + x
.

Simplifications of Rational Matrices by Using UML 83

This function should be represented as a quotient of two polynomials. Therefore,
the polynomial −1 + x is replaced by −1+x

1 . The simplification process then applies
the reduction of a rational function

D2,2(x) =
(−1 + x)(1 + x)

1 + x
− x2

1 + x
.

So, the numerator and denominator polynomials are divided by their common
LCM and the resulting function is D2,2(x) = − 1

1+x .

Example 5.2. Consider the following polynomial matrices from [7]:

A =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
−4x2 − 3 2 − 7x 4
−9x 3x2 − 3 −5

9x2 − 2x 9x2 −5
−4x2 − 3 2 − 7x 4

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ , W =

⎡⎢⎢⎢⎢⎢⎢⎣
3 7x 4 5
−9x 3x2 − 3 5 x + 5
−6 −14x −8 −10

⎤⎥⎥⎥⎥⎥⎥⎦ .

The matrix W was chosen randomly, but with appropriate dimensions. Algorithm
2.1 from [7] produced the full-rank QDR factorization of W, where the rational
matrices Q and R are given as:

Q=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
3

9x(8x2−1)
9x2+5

−9x
15(8x2−1)

9x2+5

−6 − 18x(8x2−1)
9x2+5

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦, R=
⎡⎢⎢⎢⎢⎢⎣
9
(
9x2 + 5

)
3x
(
44 − 9x2

)
60 − 45x 75 − 9x(x + 5)

0
45(1−8x2)2

9x2+5
15(12x+5)(8x2−1)

9x2+5
15(16x+5)(8x2−1)

9x2+5

⎤⎥⎥⎥⎥⎥⎦ ,

and therefore, the matrix product RAQ is as follows:

RAQ =

⎡⎢⎢⎢⎢⎢⎣ 9
(
−240+ 175x + 716x2 − 1164x3 + 417x4 + 81x6

)
− 45(−35−96x+530x2+1040x3−2324x4−2392x5+2592x6+1728x7)

5+9x2

− 45(80−586x−58x2+4178x3−4755x4+4044x5+792x6+288x7)
5+9x2

− 45(−1+8x2)2(−95+120x+857x2−1263x3+156x4)
(5+9x2)2

⎤⎥⎥⎥⎥⎥⎥⎥⎦ .

This matrix is derived after the simplification process of each single entry repre-
sented by a rational function. To represent the matrix RAQ to the form of quotient
of a polynomial matrix and a polynomial, one should evaluate the LCM of the
denominators in RAQ. Therefore:

RAQ =
1

25 + 90x2 + 81x4 ·[−54000+39375x−33300x2−120150x3+498825x4−815265x5+877959x6−848556x7+369603x8+59049x10

7875+21600x−105075x2−195120x3+308250x4+117000x5+358020x6+579960x7−1049760x8−699840x9

−18000+131850x−19350x2−702720x3+1093365x4−2601990x5+1747575x6−1702620x7−320760x8−116640x9

4275−5400x−106965x2+143235x3+883620x4−1254960x5−2355840x6+3637440x7−449280x8

]
.

84 M. B. Tasić, I. P. Stanimirović

6. Conclusion

Use-Case diagram for algorithms involving matrix simplifications and some ac-
tivity diagrams for simplifying matrix entries and different representation were
provided via UML. Algorithms involving different matrix simplifications and rep-
resentations were derived in previous papers. Here we explained these methods
with more details and used UML to represent them. We illustrated this simplifica-
tion techniques via several numerical examples.

7. Appendix

A. C++ implementation case of the class RFunction.

class RFunction

{

public:

RFunction (const Polinom& = Polinom(0), const Polinom& = Polinom(0));

RFunction (const RFunction&);

RFunction& operator = (const RFunction&);

Polinom Numerator() const;

Polinom Denominator() const;

void Simplify();

friend ostream &operator << (ostream &cout, const RFunction &);

friend istream &operator >> (istream &cin, RFunction &);

static Polinom NZD (Polinom&, Polinom&);

private:

Polinom numerator;

Polinom denominator;

};

void RFunction::Simplify()

{

Polinom NZDPoly = NZD(numerator, denominator);

if (NZDPoly.Stepen() > 0)

{

numerator = numerator / NZDPoly;

denominator = denominator / NZDPoly;

}

RNumber tmp = this -> denominator.Coefficients() [this -> denominator.Stepen()];

if((tmp!=RNumber(1,1))&&(tmp!=RNumber(0,1))&&(this->denominator.Stepen()==0))

{ numerator.Divide(tmp);

denominator.Divide(tmp);

}

}

Polinom RFunction::NZD (Polinom& p, Polinom& q)

{

Polinom pp = Polinom (p);

Polinom qq = Polinom (q);

if (p.Stepen() < q.Stepen())

{ pp = Polinom (q);

qq = Polinom (p);

Simplifications of Rational Matrices by Using UML 85

}

if (pp.isZero () && qq.isZero ()) return Polinom (0, ’x’, 1);

while (qq.isZero() == false)

{ Polinom tmp = qq;

qq = pp % qq;

pp = tmp;

}

pp.SetMonic();

return pp;

}

B. Graphical interface of the application for simplifying rational functions is de-
picted on the following figure 7.1.

Fig. 7.1: Application’s graphical interface.

R E F E R E N C E S

1. G. Booch, J. Rumbaugh, I. Jacobson: The Unified Modeling Language User Guide, Addison
Wesley, 1999.

2. G. H. Golub, C. F. Van Loan: Matrix Computations, Third edition, The Johns Hopkins
University Press, Baltimore, 1996.

3. A.N. Malyshev: ”Matrix equations: Factorization of matrix polynomials” M. Hazewinkel (ed.),
Handbook of Algebra I, Elsevier (1995), 79-116.

4. ObjectManagementGroup, http:/www.omg.org: OMG Uniffied Modeling Language specif-
fication, March 2003, version 1.5.

5. L. Rodman: ”Matrix functions” M. Hazewinkel (ed.) , Handbook of Algebra , I , Elsevier
(1995), 117-154.

86 M. B. Tasić, I. P. Stanimirović

6. I.P. Stanimirović, M.B. Tasić, A.M. Ilić: Full-rank LDL∗ Decomposition and Generalized
Inverses of Polynomial Hermitian Matrices, submitted to Information and Computation.

7. P. Stanimirović, D. Pappas, V. Katsikis, I. Stanimirović: Symbolic computation of A(2)
T,S-

inverses using QDR factorization, Linear Algebra Appl. 437 (2012), 1317-1331.

8. M.B. Tasić, I.P. Stanimirović: Implementation of partitioning method, Facta Universitatis
(Niš) Ser. Math. Inform. 25 (2010), 25–33.

9. M.B. Tasić, I.P. Stanimirović: Symbolic computation of Moore-Penrose inverse using the LDL∗

decomposition of the polynomial matrix, Filomat (2012), accepted.

10. M.B. Tasić, P.S. Stanimirović, M.D. Petković: Symbolic computation of weighted Moore-
Penrose inverse using partitioning method, Appl. Math. Comput. 189 (2007), 615–640.

11. F. Winkler: Polynomial Algorithms in Computer Algebra, Springer, 1996.

12. S. Wolfram: The Mathematica Book, 4th ed., Wolfram Media/Cambridge University Press,
1999.

Milan B. Tasić

Faculty of Sciences and Mathematics,

Department of Computer Sciences,

P. O. Box 224, Višegradska 33,

18000 Niš, Serbia

milan12t@ptt.rs

Ivan P. Stanimirović
Faculty of Sciences and Mathematics,
Department of Computer Sciences,
P. O. Box 224, Višegradska 33,
18000 Niš, Serbia
ivan.stanimirovic@gmail.com

	Introduction
	Class diagrams
	Use case diagram
	Activity diagrams
	Numerical examples
	Conclusion
	Appendix

