FACTA UNIVERSITATIS (NIŠ) Ser. Math. Inform. 28, No 1 (2013), 67–74

A NOTE ON MULTIPLIERS OF WEAK TYPE ON THE DYADIC GROUP

Nacima Memić

Abstract. In this paper we give an example that shows the sharpness of Quek's result on weak type multipliers for Lipschitz functions on the dyadic group.

Keywords: Weak multipliers, Lipschitz functions, dyadic group.

1. Introduction

Let \mathbb{Z}_2 denote the discrete cyclic group $\mathbb{Z}_2 = \{0, 1\}$, where the group operation is addition modulo 2. If |E| denotes the measure of the subset $E \subset \mathbb{Z}_2$, then $|\{0\}| = |\{1\}| = \frac{1}{2}$.

The dyadic group *G* is obtained from $G = \prod_{i=0}^{\infty} \mathbb{Z}_2$, where topology and measure are obtained by the product.

Let $x = (x_n)_{n \ge 0} \in G$. The sets

$$I_n(\mathbf{x}) := \{ y \in G : y_0 = x_0, \dots, y_{n-1} = x_{n-1} \}, \ n \ge 1$$

and $I_0(x) := G$ are dyadic intervals of *G*. Set $e_n := (\delta_{in})_i$.

We define the right shift by

$$e_i.x:=\sum_{j=i}^{\infty}x_{j-i}e_j.$$

The Walsh-Paley system Γ is defined as the set of Walsh-Paley functions

$$\psi_i(\mathbf{x}) = \prod_{k=0}^{\infty} (r_k(\mathbf{x}))^{i_k}, \ i \in \mathbb{N}, \ \mathbf{x} \in G,$$

Received September 25, 2012.; Accepted March 17, 2013.

²⁰¹⁰ Mathematics Subject Classification. Primary 43A22, Secondary 43A15

where $i = \sum_{k=0}^{\infty} i_k 2^k$ and $r_k(x) = (-1)^{x_k}$.

Let Γ_n denote the finite subset of characters taking the value 1 on the subgroup $I_n(0)$. It is easily seen that

$$\Gamma_n = \{\psi_0, \psi_1, \dots, \psi_{2^n-1}\}$$

Also, $(\Gamma_n)_n$ is an increasing sequence and $\Gamma = \bigcup_{n=0}^{\infty} \Gamma_n$.

Let μ , λ be the Haar measures on *G* and Γ respectively. These are chosen so that

$$\mu(G)=\lambda(\Gamma_0)=1$$

and

$$\mu(I_n) = (\lambda(\Gamma_n))^{-1} = 2^{-n},$$

for every $n \ge 1$.

On the set Γ we define the metric $|\xi - \eta| = 2^n$, if

$$\xi \cdot \eta^{-1} \in \Gamma_n \backslash \Gamma_{n-1}.$$

Let $f \in L^{\infty}(\Gamma)$. f^n will denote the function

$$f \cdot \mathbf{1}_{\Gamma_{n+1}} - f \cdot \mathbf{1}_{\Gamma_n}$$

where 1_A is the characteristic function of the set A. In other words, f^n is the restriction of f on the set $\Gamma_{n+1} \setminus \Gamma_n$, and f^n vanishes outside that set.

For any $\beta > 0$, the set Λ_{β} is the Lipschitz space of functions $f \in L^{\infty}(\Gamma)$ so that

$$\|f\|_{\Lambda_{\beta}} = \sup_{\psi_{i} \neq \psi_{i}} \frac{|f(\psi_{i}) - f(\psi_{j})|}{|\psi_{i} - \psi_{j}|^{\beta}} < \infty.$$

The Fourier transform and the inverse Fourier transform are denoted by \wedge and \vee respectively.

Namely, if φ is integrable on *G*, then,

$$\varphi^{\wedge}(\psi_i) = \int \varphi(x) \overline{\psi}_i(x) dx,$$

where $\psi_i \in \Gamma$, $i \in \mathbb{N}$.

68

Now, if $f \in L^{\infty}(\Gamma)$, then

$$f^{\vee}(\mathbf{x}) = \sum_{i=0}^{\infty} f(\psi_i)\psi_i(\mathbf{x}), \quad \mathbf{x} \in G.$$

It is easily seen that $(2^n \mathbf{1}_{G_n})^{\wedge} = \mathbf{1}_{\Gamma_n}$.

On the set of real numbers, the question on how little regularity is needed for the restriction of a function on bounded intervals in order to construct an *L*^{*p*}-multiplier emerged in [5].

Sufficient conditions have been studied in [1] and [2].

By means of an analogue of Calderón-Zygmund decomposition [3], Quek [6] obtained the following result for *L*^{*p*}-multipliers on totally disconnected groups which are nothing but generalizations of the dyadic group:

Theorem 1.1. ([6]) Let $1 and let <math>f \in L^{\infty}(\Gamma)$. Suppose there exists $\beta > \frac{2-p}{2p}$ such that

(1.1)
$$\|f^{j}\|_{\Lambda_{\beta}} \leq C \cdot 2^{-j\beta}, j \in \mathbb{N},$$

where *C* is a constant independent of *j*. Then *f* is an $L^{p}(G)$ -multiplier.

Gaudry and Inglis [4] proved that for $\beta < \frac{2-p}{2p}$, there exists a function f on the dyadic group satisfying (1.1), but f is not an L^p -multiplier.

The following open question appeared in [6]:

If $\beta = \frac{2-p}{2p}$, and $f \in L^{\infty}(\Gamma)$ satisfies (1.1). Is f a multiplier of weak type (p, p) on G?

However, we prove:

Theorem 1.1. If *G* is the dyadic group, $1 , then there exists a function <math>f \in L^{\infty}(\Gamma)$ having the property (1.1), but *f* is not a multiplier of weak type (p, p) on *G*.

2. Proof of Theorem 1.1

The proof of Theorem 1.1 is based on the following lemma.

Lemma 2.1. Let *G* be the dyadic group. There exists a function $f \in L^{\infty}(\Gamma)$ so that

 $|(f^k)^{\vee}(t)| = 2^{k(\frac{1}{2}-\beta)},$

for every even positive integer k and for every $t \in G$.

Proof. Let $f \in L^{\infty}(\Gamma)$ be a real function such that $f^0 = f^k = 0$, for every odd number *k* and f^2 takes the values $f^2(\psi_4) = f^2(\psi_5) = f^2(\psi_6) = -f^2(\psi_7) = 2^{-2\beta}$.

We construct recursively f^{2k+2} from f^{2k} assuming that $(f^{2k})^{\vee}$ takes only the values $\pm 2^{2k(\frac{1}{2}-\beta)}$, which is easily verified for $(f^2)^{\vee}$. In fact, since $(f^2)^{\vee}$ is constant on I_3 -cosets, it suffices to calculate its values on

 $0, \ e_0, \ e_1, \ e_0 + e_1, \ e_2, \ e_2 + e_0, \ e_2 + e_1, \ e_2 + e_0 + e_1.$

Simple calculations give that $|(f^2)^{\vee}| = 2^{2(\frac{1}{2}-\beta)}$.

Using the notations above we have for $k \ge 1$,

$$\Gamma_{2k+1} \setminus \Gamma_{2k} = \{\psi_{2^{2k}}, \ldots, \psi_{2^{2k+1}-1}\}.$$

It is easily seen that

$$\Gamma_{2k+3} \setminus \Gamma_{2k+2} = \{ \psi_{2^{2k+2}}, \dots, \psi_{2^{2k+3}-1} \}$$

= $\{ \psi_{4i}, \psi_{4i+1}, \psi_{4i+2}, \psi_{4i+3}; \psi_i \in \Gamma_{2k+1} \setminus \Gamma_{2k} \}.$

We put

$$f^{2k+2}(\psi_{4i}) = f^{2k+2}(\psi_{4i+1}) = f^{2k+2}(\psi_{4i+2}) = -f^{2k+2}(\psi_{4i+3}) = 2^{-2\beta} f^{2k}(\psi_i),$$

for $\psi_i \in \Gamma_{2k+1} \setminus \Gamma_{2k}$.

Assume that for some $k \ge 1$, $(f^{2k})^{\vee}$ takes only the values $\pm 2^{2k(\frac{1}{2}-\beta)}$. We prove that $(f^{2k+2})^{\vee}$ only takes the values $\pm 2^{(2k+2)(\frac{1}{2}-\beta)}$. It suffices to verify this fact only on the set of representatives of all classes from G/I_{2k+3} .

Let $(t_j)_{j \in J}$ be a fixed set of representatives of all I_{2k+1} cosets. We can generate a complete set of representatives of I_{2k+3} cosets if we consider elements of the form

$$t_j^1 = e_2 \cdot t_j, t_j^2 = e_2 \cdot t_j + e_0, t_j^3 = e_2 \cdot t_j + e_1 \text{ and } t_j^4 = e_2 \cdot t_j + e_0 + e_1, j \in J.$$

Now,

70

$$\begin{split} (f^{2k+2})^{\vee}(t_j^1) &= \sum_{\psi_l \in \Gamma_{2k+3} \setminus \Gamma_{2k+2}} f^{2k+2}(\psi_i)\psi_i(t_j^1) \\ &= \sum_{\psi_l \in \Gamma_{2k+3} \setminus \Gamma_{2k+2}} f(\psi_i)\psi_i(t_j^1) + \sum_{\psi_l \in \Gamma_{2k+1} \setminus \Gamma_{2k}} f(\psi_{4i+1})\psi_{4i+1}(t_j^1) \\ &= \sum_{\psi_l \in \Gamma_{2k+1} \setminus \Gamma_{2k}} f(\psi_{4i})\psi_{4i}(t_j^1) + \sum_{\psi_l \in \Gamma_{2k+1} \setminus \Gamma_{2k}} f(\psi_{4i+3})\psi_{4i+3}(t_j^1) \\ &+ \sum_{\psi_l \in \Gamma_{2k+1} \setminus \Gamma_{2k}} f(\psi_i)\psi_i(t_j) + 2^{-2\beta} \sum_{\psi_l \in \Gamma_{2k+1} \setminus \Gamma_{2k}} f(\psi_i)\psi_i(t_j) \\ &+ 2^{-2\beta} \sum_{\psi_l \in \Gamma_{2k+1} \setminus \Gamma_{2k}} f(\psi_l)\psi_i(t_j) - 2^{-2\beta} \sum_{\psi_l \in \Gamma_{2k+1} \setminus \Gamma_{2k}} f(\psi_l)\psi_i(t_j) \\ &= 2^{-2\beta+1} \sum_{\psi_l \in \Gamma_{2k+1} \setminus \Gamma_{2k}} f^{2k}(\psi_l)\psi_i(t_j) \\ &= 2^{-2\beta+1} (f^{2k})^{\vee}(t_j), \end{split}$$

because

$$\psi_{4i}(t_j^1) = \psi_{4i+1}(t_j^1) = \psi_{4i+2}(t_j^1) = \psi_{4i+3}(t_j^1) = \psi_i(t_j).$$

In a similar way we have

$$\begin{split} (f^{2k+2})^{\vee}(t_{j}^{2}) &= \sum_{\psi_{l}\in\Gamma_{2k+3}\backslash\Gamma_{2k+2}} f^{2k+2}(\psi_{i})\psi_{i}(t_{j}^{2}) \\ &= \sum_{\psi_{l}\in\Gamma_{2k+3}\backslash\Gamma_{2k+2}} f(\psi_{i})\psi_{i}(t_{j}^{2}) \\ &= \sum_{\psi_{l}\in\Gamma_{2k+1}\backslash\Gamma_{2k}} f(\psi_{4i})\psi_{4i}(t_{j}^{2}) + \sum_{\psi_{l}\in\Gamma_{2k+1}\backslash\Gamma_{2k}} f(\psi_{4i+1})\psi_{4i+1}(t_{j}^{2}) \\ &+ \sum_{\psi_{l}\in\Gamma_{2k+1}\backslash\Gamma_{2k}} f(\psi_{4i+2})\psi_{4i+2}(t_{j}^{2}) + \sum_{\psi_{l}\in\Gamma_{2k+1}\backslash\Gamma_{2k}} f(\psi_{4i+3})\psi_{4i+3}(t_{j}^{2}) \\ &= 2^{-2\beta}\sum_{\psi_{l}\in\Gamma_{2k+1}\backslash\Gamma_{2k}} f(\psi_{l})\psi_{i}(t_{j}) - 2^{-2\beta}\sum_{\psi_{l}\in\Gamma_{2k+1}\backslash\Gamma_{2k}} f(\psi_{l})\psi_{i}(t_{j}) \\ &+ 2^{-2\beta}\sum_{\psi_{l}\in\Gamma_{2k+1}\backslash\Gamma_{2k}} f(\psi_{l})\psi_{i}(t_{j}) + 2^{-2\beta}\sum_{\psi_{l}\in\Gamma_{2k+1}\backslash\Gamma_{2k}} f(\psi_{l})\psi_{i}(t_{j}) \\ &= 2^{-2\beta+1}\sum_{\psi_{l}\in\Gamma_{2k+1}\backslash\Gamma_{2k}} f^{2k}(\psi_{l})\psi_{i}(t_{j}) = 2^{-2\beta+1}(f^{2k})^{\vee}(t_{j}), \end{split}$$

N. Memić

because

$$\psi_{4i}(t_j^2) = \psi_{4i+2}(t_j^2) = -\psi_{4i+1}(t_j^2) = -\psi_{4i+3}(t_j^2) = \psi_i(t_j)$$

Since

$$\psi_{4i}(t_j^3) = \psi_{4i+1}(t_j^3) = -\psi_{4i+2}(t_j^3) = -\psi_{4i+3}(t_j^3) = \psi_i(t_j)$$

and

$$\psi_{4i}(t_j^4) = -\psi_{4i+1}(t_j^4) = -\psi_{4i+2}(t_j^4) = \psi_{4i+3}(t_j^4) = \psi_i(t_j),$$

we similarly get

$$(f^{2k+2})^{\vee}(t_j^3) = -(f^{2k+2})^{\vee}(t_j^4) = 2^{-2\beta+1}(f^{2k})^{\vee}(t_j)$$

which ends the proof of the lemma. $\hfill\square$

The following is the proof of Theorem 1.1.

Proof. We use the function *f* from Lemma 2.1. It is easily seen that the property (1.1) is satisfied. We prove the existence of locally constant functions $(\varphi_n)_n$ and positive numbers $(\sigma_n)_n$, so that

$$\mu(\{t \in G : |f^{\vee} * \varphi_n| > \sigma_n\}) = 1$$

for every *n*, and

$$\frac{\|\varphi_n\|_p^p}{\sigma_n^p} \to 0$$

as $n \to \infty$.

Indeed, let

$$\sigma_k = 2^{k(\frac{1}{2}-\beta)}, k \ge 0, \quad \varphi_n = 3\sum_{k=0}^{n-1} \epsilon_k \frac{\sigma_n}{n\sigma_k} (\triangle_{k+1} - \triangle_k),$$

where $\triangle_k = 2^k \mathbf{1}_{G_k}$, and $\varepsilon_k(t) = \operatorname{sgn}((f^k)^{\vee}(t))$. Since,

$$(f^k)^{\vee}(t) = (f \cdot 1_{\Gamma_{k+1}} - f \cdot 1_{\Gamma_k})^{\vee}(t) = (f^{\vee} * (1_{\Gamma_{k+1}} - 1_{\Gamma_k})^{\vee})(t) = f^{\vee} * (\triangle_{k+1} - \triangle_k)(t),$$

72

then,

$$\epsilon_k(t) = \operatorname{sgn}(f^{\vee} * (\triangle_{k+1} - \triangle_k)(t)).$$

We have

$$\begin{split} f^{\vee} * \varphi_n &= 3\sum_k \epsilon_k \frac{\sigma_n}{n\sigma_k} f^{\vee} * (\triangle_{k+1} - \triangle_k) \\ &= 3\sum_{k=0}^{n-1} \frac{\sigma_n}{n\sigma_k} |f^{\vee} * (\triangle_{k+1} - \triangle_k)(t)| \\ &= 3\sum_{k=0}^{n-1} \frac{\sigma_n}{n\sigma_k} |(f^k)^{\vee}(t)| > \sigma_n, \end{split}$$

for every $t \in G$.

Besides, by Lemma 2.2 in [6], we obtain

$$\begin{split} \|\varphi_n\|_p^p &= \|3\sum_{k=0}^{n-1} \epsilon_k \frac{\sigma_n}{n\sigma_k} (\Delta_{k+1} - \Delta_k)\|_p^p \\ &= \|3\sum_{k=0}^{n-1} ([\epsilon_k \frac{\sigma_n}{n\sigma_k} (\Delta_{k+1} - \Delta_k)]^\wedge)^\vee\|_p^p \\ &= \|3\sum_{k=0}^{n-1} ([\epsilon_k \frac{\sigma_n}{n\sigma_k} (\Delta_{k+1} - \Delta_k)]^\wedge \cdot \mathbf{1}_{\Gamma_{k+1} \setminus Gamma_k})^\vee\|_p^p \\ &\leq C\sum_{k=0}^{n-1} \frac{\sigma_n^p}{n^p \sigma_k^p} \|\Delta_{k+1} - \Delta_k\|_{p'}^p \end{split}$$

for some constant *C* independent on the choice of *n*.

The assumption $\beta = \frac{2-p}{2p}$ implies that $\| \triangle_{k+1} - \triangle_k \|_p^p = \sigma_k^p$. Then, $\frac{\|\varphi_n\|_p^p}{\sigma_n^p} \leq C_{\frac{n}{n^p}} \to 0$, as $n \to \infty$. This completes the proof of Theorem 1.1.

3. Conclusion

Analyzing the works of [5] and [6], we see that a certain form of regularity of the restrictions of a given function to bounded intervals is sufficient to obtain either multipliers or weak type multipliers. The regularity needed for weak type multipliers was proved to be sharp in Theorem 3 of [6]. However, the regularity obtained

N. Memić

for multipliers is only valid for $\beta > \frac{2-p}{2p}$. The question about the nature of functions constructed under similar conditions but for $\beta = \frac{2-p}{2p}$ remained unanswered.

Our Theorem 1.1 provides a counterexample which shows that for $\beta = \frac{2-p}{2p}$, the obtained function need not be even a weak type multiplier. From which we conclude that Theorem 2 in [6] is very sharp.

Acknowledgement. I would like to thank the referees for their valuable remarks and comments.

REFERENCES

- 1. A. CARBERY: Variants of the Calderón-Zygmund theory for L^p-spaces, Rev. Mat. Iberomericana 2 (1986), 381-396.
- 2. M. COWLING, G. FENDLER and J. J. F. FOURNIER, Variants of Littlewood-Paley theory, Math. Ann. 285 (1989), 333-342.
- 3. R. E. EDWARDS and G. I. GAUDRY: *Littlewood-Paley and multiplier theory*, Springer-Verlag, Berlin, 1977.
- 4. G. I. GAUDRY and I. R. INGLIS: Weak-strong convolution operators on certain disconnected groups, Studia Math.64(1979).
- 5. W. LITTMAN, C. MCCARTHY and N. RIVIÈRE: *L^p-multiplier theorem*, Studia Math. **30** (1968), 193-217.
- 6. T. S. QUEK: Multipliers of weak type on locally compact Vilenkin groups, Proc. Amer. Math. Soc. 9(1996), 2727-2736, Vol 124.

Nacima Memić University of Sarajevo Department of Mathematics Zmaja od Bosne 35 71000 Sarajevo, Bosnia and Herzegovina nacima.o@gmail.com