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A NOTE ON MULTIPLIERS OF WEAK TYPE ON THE DYADIC GROUP

Nacima Memić

Abstract. In this paper we give an example that shows the sharpness of Quek,s result on
weak type multipliers for Lipschitz functions on the dyadic group.

Keywords: Weak multipliers, Lipschitz functions, dyadic group.

1. Introduction

Let Z2 denote the discrete cyclic group Z2 = {0, 1}, where the group operation
is addition modulo 2. If |E| denotes the measure of the subset E ⊂ Z2, then
|{0}| = |{1}| = 1

2 .

The dyadic group G is obtained from G =
∞∏
i=0
Z2, where topology and measure

are obtained by the product.

Let x = (xn)n≥0 ∈ G. The sets

In(x) := {y ∈ G : y0 = x0, . . . , yn−1 = xn−1}, n ≥ 1

and I0(x) := G are dyadic intervals of G. Set en := (δin)i.

We define the right shift by

ei.x :=
∞∑
j=i

xj−iej.

The Walsh-Paley system Γ is defined as the set of Walsh-Paley functions

ψi(x) =
∞∏

k=0

(rk(x))ik , i ∈N, x ∈ G,
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where i =
∞∑

k=0
ik2k and rk(x) = (−1)xk .

Let Γn denote the finite subset of characters taking the value 1 on the subgroup
In(0). It is easily seen that

Γn = {ψ0, ψ1, . . . , ψ2n−1}.

Also, (Γn)n is an increasing sequence and Γ =
∞⋃

n=0
Γn.

Let μ, λ be the Haar measures on G and Γ respectively. These are chosen so that

μ(G) = λ(Γ0) = 1

and
μ(In) = (λ(Γn))−1 = 2−n,

for every n ≥ 1.

On the set Γwe define the metric |ξ − η| = 2n, if

ξ · η−1 ∈ Γn\Γn−1.

Let f ∈ L∞(Γ). f n will denote the function

f · 1Γn+1 − f · 1Γn ,

where 1A is the characteristic function of the set A. In other words, f n is the
restriction of f on the set Γn+1 \ Γn, and f n vanishes outside that set.

For any β > 0, the set Λβ is the Lipschitz space of functions f ∈ L∞(Γ) so that

‖ f ‖Λβ = sup
ψi�ψ j

| f (ψi) − f (ψ j)|
|ψi − ψ j|β < ∞.

The Fourier transform and the inverse Fourier transform are denoted by ∧ and
∨ respectively.

Namely, if ϕ is integrable on G, then,

ϕ∧(ψi) =
∫
ϕ(x)ψi(x)dx,

where ψi ∈ Γ, i ∈N.
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Now, if f ∈ L∞(Γ), then

f∨(x) =
∞∑
i=0

f (ψi)ψi(x), x ∈ G.

It is easily seen that (2n1Gn)
∧ = 1Γn .

On the set of real numbers, the question on how little regularity is needed for the
restriction of a function on bounded intervals in order to construct an Lp-multiplier
emerged in [5].

Sufficient conditions have been studied in [1] and [2].

By means of an analogue of Calderón-Zygmund decomposition [3], Quek [6]
obtained the following result for Lp-multipliers on totally disconnected groups
which are nothing but generalizations of the dyadic group:

Theorem 1.1. ([6]) Let 1 < p < 2 and let f ∈ L∞(Γ). Suppose there exists β > 2−p
2p such

that

(1.1) ‖ f j‖Λβ ≤ C · 2− jβ, j ∈N,
where C is a constant independent of j. Then f is an Lp(G)-multiplier.

Gaudry and Inglis [4] proved that for β < 2−p
2p , there exists a function f on the

dyadic group satisfying (1.1), but f is not an Lp-multiplier.

The following open question appeared in [6]:

If β = 2−p
2p , and f ∈ L∞(Γ) satisfies (1.1). Is f a multiplier of weak type (p, p) on

G?

However, we prove:

Theorem 1.1. If G is the dyadic group, 1 < p < 2, then there exists a function f ∈ L∞(Γ)
having the property (1.1), but f is not a multiplier of weak type (p, p) on G.

2. Proof of Theorem 1.1

The proof of Theorem 1.1 is based on the following lemma.

Lemma 2.1. Let G be the dyadic group. There exists a function f ∈ L∞(Γ) so that

|( f k)∨(t)| = 2k( 1
2−β),

for every even positive integer k and for every t ∈ G.
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Proof. Let f ∈ L∞(Γ) be a real function such that f 0 = f k = 0, for every odd
number k and f 2 takes the values f 2(ψ4) = f 2(ψ5) = f 2(ψ6) = − f 2(ψ7) = 2−2β.

We construct recursively f 2k+2 from f 2k assuming that ( f 2k)∨ takes only the
values ±22k( 1

2−β), which is easily verified for ( f 2)∨. In fact, since ( f 2)∨ is constant on
I3-cosets, it suffices to calculate its values on

0, e0, e1, e0 + e1, e2, e2 + e0, e2 + e1, e2 + e0 + e1.

Simple calculations give that |( f 2)∨| = 22( 1
2−β).

Using the notations above we have for k ≥ 1,

Γ2k+1 \ Γ2k = {ψ22k , . . . , ψ22k+1−1}.

It is easily seen that

Γ2k+3 \ Γ2k+2 = {ψ22k+2 , . . . , ψ22k+3−1}
= {ψ4i, ψ4i+1, ψ4i+2, ψ4i+3;ψi ∈ Γ2k+1 \ Γ2k}.

We put

f 2k+2(ψ4i) = f 2k+2(ψ4i+1) = f 2k+2(ψ4i+2) = − f 2k+2(ψ4i+3) = 2−2β f 2k(ψi),

for ψi ∈ Γ2k+1 \ Γ2k.

Assume that for some k ≥ 1, ( f 2k)∨ takes only the values ±22k( 1
2−β). We prove

that ( f 2k+2)∨ only takes the values ±2(2k+2)( 1
2−β). It suffices to verify this fact only on

the set of representatives of all classes from G/I2k+3.

Let (t j) j∈J be a fixed set of representatives of all I2k+1 cosets. We can generate a
complete set of representatives of I2k+3 cosets if we consider elements of the form

t1
j = e2.tj, t2

j = e2.tj + e0, t3
j = e2.tj + e1 and t4

j = e2.tj + e0 + e1, j ∈ J.

Now,
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( f 2k+2)∨(t1
j ) =

∑
ψi∈Γ2k+3\Γ2k+2

f 2k+2(ψi)ψi(t1
j )

=
∑

ψi∈Γ2k+3\Γ2k+2

f (ψi)ψi(t1
j )

=
∑

ψi∈Γ2k+1\Γ2k

f (ψ4i)ψ4i(t1
j ) +

∑
ψi∈Γ2k+1\Γ2k

f (ψ4i+1)ψ4i+1(t1
j )

+
∑

ψi∈Γ2k+1\Γ2k

f (ψ4i+2)ψ4i+2(t1
j ) +

∑
ψi∈Γ2k+1\Γ2k

f (ψ4i+3)ψ4i+3(t1
j )

= 2−2β
∑

ψi∈Γ2k+1\Γ2k

f (ψi)ψi(t j) + 2−2β
∑

ψi∈Γ2k+1\Γ2k

f (ψi)ψi(t j)

+2−2β
∑

ψi∈Γ2k+1\Γ2k

f (ψi)ψi(t j) − 2−2β
∑

ψi∈Γ2k+1\Γ2k

f (ψi)ψi(t j)

= 2−2β+1
∑

ψi∈Γ2k+1\Γ2k

f 2k(ψi)ψi(t j)

= 2−2β+1( f 2k)∨(t j),

because
ψ4i(t1

j ) = ψ4i+1(t1
j ) = ψ4i+2(t1

j ) = ψ4i+3(t1
j ) = ψi(t j).

In a similar way we have

( f 2k+2)∨(t2
j ) =

∑
ψi∈Γ2k+3\Γ2k+2

f 2k+2(ψi)ψi(t2
j )

=
∑

ψi∈Γ2k+3\Γ2k+2

f (ψi)ψi(t2
j )

=
∑

ψi∈Γ2k+1\Γ2k

f (ψ4i)ψ4i(t2
j ) +

∑
ψi∈Γ2k+1\Γ2k

f (ψ4i+1)ψ4i+1(t2
j )

+
∑

ψi∈Γ2k+1\Γ2k

f (ψ4i+2)ψ4i+2(t2
j ) +

∑
ψi∈Γ2k+1\Γ2k

f (ψ4i+3)ψ4i+3(t2
j )

= 2−2β
∑

ψi∈Γ2k+1\Γ2k

f (ψi)ψi(t j) − 2−2β
∑

ψi∈Γ2k+1\Γ2k

f (ψi)ψi(t j)

+2−2β
∑

ψi∈Γ2k+1\Γ2k

f (ψi)ψi(t j) + 2−2β
∑

ψi∈Γ2k+1\Γ2k

f (ψi)ψi(t j)

= 2−2β+1
∑

ψi∈Γ2k+1\Γ2k

f 2k(ψi)ψi(t j) = 2−2β+1( f 2k)∨(t j),
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because
ψ4i(t2

j ) = ψ4i+2(t2
j ) = −ψ4i+1(t2

j ) = −ψ4i+3(t2
j ) = ψi(t j).

Since
ψ4i(t3

j ) = ψ4i+1(t3
j ) = −ψ4i+2(t3

j ) = −ψ4i+3(t3
j ) = ψi(t j),

and

ψ4i(t4
j ) = −ψ4i+1(t4

j ) = −ψ4i+2(t4
j ) = ψ4i+3(t4

j ) = ψi(t j),

we similarly get

( f 2k+2)∨(t3
j ) = −( f 2k+2)∨(t4

j ) = 2−2β+1( f 2k)∨(t j),

which ends the proof of the lemma.
The following is the proof of Theorem 1.1.

Proof. We use the function f from Lemma 2.1. It is easily seen that the property
(1.1) is satisfied. We prove the existence of locally constant functions (ϕn)n and
positive numbers (σn)n, so that

μ({t ∈ G : | f∨ ∗ ϕn| > σn}) = 1

for every n, and
‖ϕn‖pp
σp

n

→ 0

as n→∞.

Indeed, let

σk = 2k( 1
2−β), k ≥ 0, ϕn = 3

n−1∑
k=0

εk
σn

nσk
(�k+1 − �k),

where �k = 2k1Gk , and εk(t) = sgn(( f k)∨(t)). Since,

( f k)∨(t) = ( f · 1Γk+1 − f · 1Γk )
∨(t)

= ( f∨ ∗ (1Γk+1 − 1Γk )
∨)(t)

= f∨ ∗ (�k+1 − �k)(t),
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then,
εk(t) = sgn( f∨ ∗ (�k+1 − �k)(t)).

We have

f∨ ∗ ϕn = 3
∑

k

εk
σn

nσk
f∨ ∗ (�k+1 − �k)

= 3
n−1∑
k=0

σn

nσk
| f∨ ∗ (�k+1 − �k)(t)|

= 3
n−1∑
k=0

σn

nσk
|( f k)∨(t)| > σn,

for every t ∈ G.

Besides, by Lemma 2.2 in [6], we obtain

‖ϕn‖pp = ‖3
n−1∑
k=0

εk
σn

nσk
(�k+1 − �k)‖pp

= ‖3
n−1∑
k=0

([εk
σn

nσk
(�k+1 − �k)]∧)∨‖pp

= ‖3
n−1∑
k=0

([εk
σn

nσk
(�k+1 − �k)]∧ · 1Γk+1\Gammak )

∨‖pp

≤ C
n−1∑
k=0

σp
n

npσp
k

‖�k+1 − �k‖pp,

for some constant C independent on the choice of n.

The assumption β = 2−p
2p implies that ‖�k+1 − �k‖pp = σp

k .

Then,
‖ϕn‖pp
σ

p
n
≤ C n

np → 0, as n→∞. This completes the proof of Theorem 1.1.

3. Conclusion

Analyzing the works of [5] and [6], we see that a certain form of regularity of the
restrictions of a given function to bounded intervals is sufficient to obtain either
multipliers or weak type multipliers. The regularity needed for weak type multi-
pliers was proved to be sharp in Theorem 3 of [6]. However, the regularity obtained
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for multipliers is only valid for β > 2−p
2p . The question about the nature of functions

constructed under similar conditions but for β = 2−p
2p remained unanswered.

Our Theorem 1.1 provides a counterexample which shows that for β = 2−p
2p ,

the obtained function need not be even a weak type multiplier. From which we
conclude that Theorem 2 in [6] is very sharp.
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